Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
66f0b25b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
66f0b25b
编写于
3月 10, 2020
作者:
X
xiaogang
提交者:
GitHub
3月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][OPENCL] add slice kernel (#3126)
* feat: add opencl elementwise_sub op & ut
上级
34c29406
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
366 addition
and
6 deletion
+366
-6
lite/backends/opencl/cl_kernel/image/slice_kernel.cl
lite/backends/opencl/cl_kernel/image/slice_kernel.cl
+78
-0
lite/kernels/opencl/CMakeLists.txt
lite/kernels/opencl/CMakeLists.txt
+6
-5
lite/kernels/opencl/elementwise_sub_image_compute.cc
lite/kernels/opencl/elementwise_sub_image_compute.cc
+1
-1
lite/kernels/opencl/slice_image_compute.cc
lite/kernels/opencl/slice_image_compute.cc
+133
-0
lite/kernels/opencl/slice_image_compute_test.cc
lite/kernels/opencl/slice_image_compute_test.cc
+148
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/slice_kernel.cl
0 → 100644
浏览文件 @
66f0b25b
/*
Copyright
(
c
)
2019
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
slice
(
__read_only
image2d_t
input,
__write_only
image2d_t
output,
__private
const
int
start,
__private
const
int
end,
__private
const
int
dims_w
)
{
const
int
c
=
get_global_id
(
0
)
;
const
int
w
=
get_global_id
(
1
)
;
const
int
nh
=
get_global_id
(
2
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
output_pos
;
output_pos.x
=
c
*
dims_w
+
w
;
output_pos.y
=
nh
;
int2
input_pos
;
half4
input_data
;
half4
output_data
;
if
(
start
%
4
==
0
)
{
input_pos.x
=
(
4
*
c
+
start
)
/
4
*
dims_w
+
w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data
=
input_data
;
}
else
if
(
start
%
4
==
1
)
{
input_pos.x
=
(
4
*
c
+
start
)
/
4
*
dims_w
+
w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data.x
=
input_data.y
;
output_data.y
=
input_data.z
;
output_data.z
=
input_data.w
;
input_pos.x
=
input_pos.x
+
dims_w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data.w
=
input_data.x
;
}
else
if
(
start
%
4
==
2
)
{
input_pos.x
=
(
4
*
c
+
start
)
/
4
*
dims_w
+
w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data.x
=
input_data.z
;
output_data.y
=
input_data.w
;
input_pos.x
=
input_pos.x
+
dims_w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data.z
=
input_data.x
;
output_data.w
=
input_data.y
;
}
else
if
(
start
%
4
==
3
)
{
input_pos.x
=
(
4
*
c
+
start
)
/
4
*
dims_w
+
w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data.x
=
input_data.w
;
input_pos.x
=
input_pos.x
+
dims_w
;
input_pos.y
=
nh
;
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,input_pos
)
;
output_data.y
=
input_data.x
;
output_data.z
=
input_data.y
;
output_data.w
=
input_data.z
;
}
write_imageh
(
output,
output_pos,
output_data
)
;
}
lite/kernels/opencl/CMakeLists.txt
浏览文件 @
66f0b25b
...
...
@@ -29,6 +29,7 @@ add_kernel(scale_opencl OPENCL basic SRCS scale_image_compute.cc DEPS ${cl_kerne
add_kernel
(
grid_sampler_opencl OPENCL basic SRCS grid_sampler_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
lrn_opencl OPENCL basic SRCS lrn_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
bilinear_interp_opencl OPENCL basic SRCS bilinear_interp_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
slice_opencl OPENCL basic SRCS slice_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
instance_norm_opencl OPENCL basic SRCS instance_norm_image_compute.cc DEPS
${
cl_kernel_deps
}
)
# extra
...
...
@@ -71,11 +72,9 @@ lite_cc_test(test_layout_image_opencl SRCS layout_image_compute_test.cc
DEPS layout_opencl op_registry program context
)
lite_cc_test
(
test_elementwise_add_image_opencl SRCS elementwise_add_image_compute_test.cc
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
)
lite_cc_test
(
test_elementwise_sub_image_opencl SRCS elementwise_sub_image_compute_test.cc
DEPS elementwise_sub_opencl fusion_elementwise_sub_activation_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
DEPS elementwise_sub_opencl fusion_elementwise_sub_activation_opencl op_registry program context
)
lite_cc_test
(
test_grid_sampler_image_opencl SRCS grid_sampler_image_compute_test.cc
DEPS grid_sampler_opencl op_registry program context
)
...
...
@@ -85,7 +84,9 @@ lite_cc_test(test_lrn_image_opencl SRCS lrn_image_compute_test.cc
lite_cc_test
(
test_bilinear_interp_image_opencl SRCS bilinear_interp_image_compute_test.cc
DEPS bilinear_interp_opencl op_registry program context
)
lite_cc_test
(
test_slice_image_opencl SRCS slice_image_compute_test.cc
DEPS slice_opencl op_registry program context
)
lite_cc_test
(
test_instance_norm_image_opencl SRCS instance_norm_image_compute_test.cc
DEPS instance_norm_opencl op_registry program context
)
######################
...
...
lite/kernels/opencl/elementwise_sub_image_compute.cc
浏览文件 @
66f0b25b
...
...
@@ -46,7 +46,7 @@ void ElementwiseSubImageCompute::PrepareForRun() {
<<
", x->dims().size():"
<<
x
->
dims
().
size
()
<<
", y->dims.size():"
<<
y
->
dims
().
size
();
}
VLOG
(
4
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
...
...
lite/kernels/opencl/slice_image_compute.cc
0 → 100644
浏览文件 @
66f0b25b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
SliceComputeImage2D
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
SliceParam
;
std
::
string
doc
()
const
override
{
return
"Slice using cl::Image2D, kFP16"
;
}
void
PrepareForRun
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/slice_kernel.cl"
,
build_options_
);
}
void
Run
()
override
{
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
auto
&
in_dims
=
param
.
X
->
dims
();
auto
*
x_img
=
param
.
X
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
&
out_dims
=
param
.
Out
->
dims
();
std
::
vector
<
int
>
axes
=
param
.
axes
;
std
::
vector
<
int32_t
>
starts
=
param
.
starts
;
std
::
vector
<
int32_t
>
ends
=
param
.
ends
;
if
(
axes
.
size
()
>
1
||
axes
[
0
]
!=
1
)
{
LOG
(
FATAL
)
<<
"opencl slice_image only support channel slice "
;
}
int
axis
=
axes
[
0
];
int
start
=
starts
[
0
];
int
end
=
ends
[
0
];
int
dim_w
=
in_dims
[
axis
+
2
];
auto
out_image_shape
=
InitImageDimInfoWith
(
out_dims
);
auto
*
out_img
=
param
.
Out
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
"width"
],
out_image_shape
[
"height"
]);
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
cl_int
status
;
int
arg_idx
=
0
;
status
=
kernel
.
setArg
(
arg_idx
,
*
x_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
start
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
end
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
dim_w
);
CL_CHECK_FATAL
(
status
);
const
std
::
vector
<
size_t
>&
default_work_size
=
DefaultWorkSize
(
out_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
out_image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
out_image_shape
[
"height"
])}));
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
.
data
()[
1
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
.
data
()[
2
])};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_img
,
event_
);
}
private:
std
::
string
kernel_func_name_
{
"slice"
};
std
::
string
build_options_
{
"-DCL_DTYPE_half"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
slice
,
kOpenCL
,
kFP16
,
kImageDefault
,
paddle
::
lite
::
kernels
::
opencl
::
SliceComputeImage2D
,
image2d
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
lite/kernels/opencl/slice_image_compute_test.cc
0 → 100644
浏览文件 @
66f0b25b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <memory>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-1)
namespace
paddle
{
namespace
lite
{
void
slice_channel
(
const
float
*
input_data
,
const
DDim
&
in_dim
,
float
*
output_data
,
const
int
start
,
const
int
end
)
{
int
n
=
in_dim
[
0
];
int
in_n_stride
=
1
;
for
(
int
i
=
1
;
i
<
in_dim
.
size
();
++
i
)
{
in_n_stride
*=
in_dim
[
i
];
}
int
in_c_stride
=
in_n_stride
/
in_dim
[
1
];
int
mini_batch
=
end
-
start
;
for
(
int
ni
=
0
;
ni
<
n
;
++
ni
)
{
const
float
*
in_n
=
input_data
+
ni
*
in_n_stride
+
start
*
in_c_stride
;
float
*
out_n
=
output_data
+
ni
*
mini_batch
*
in_c_stride
;
memcpy
(
out_n
,
in_n
,
sizeof
(
float
)
*
mini_batch
*
in_c_stride
);
}
}
TEST
(
slice_image2d_fp16
,
compute
)
{
LOG
(
INFO
)
<<
"to get kernel ..."
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"slice"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"get kernel:"
<<
kernel
->
doc
();
lite
::
Tensor
x
,
out
;
operators
::
SliceParam
param
;
param
.
X
=
&
x
;
param
.
Out
=
&
out
;
param
.
axes
=
std
::
vector
<
int
>
({
1
});
param
.
starts
=
std
::
vector
<
int32_t
>
({
2
});
param
.
ends
=
std
::
vector
<
int32_t
>
({
5
});
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
slice_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
slice_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
slice_context
));
const
DDim
in_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
3
,
11
,
107
,
218
});
const
DDim
out_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
3
,
3
,
107
,
218
});
x
.
Resize
(
in_dim
);
out
.
Resize
(
out_dim
);
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
5
,
5
);
std
::
vector
<
float
>
input_v
(
3
*
11
*
107
*
218
);
for
(
auto
&
i
:
input_v
)
{
i
=
dist
(
engine
);
}
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
image_shape
=
default_converter
->
InitImageDimInfoWith
(
in_dim
);
LOG
(
INFO
)
<<
"image_shape = "
<<
image_shape
[
0
]
<<
" "
<<
image_shape
[
1
];
std
::
vector
<
half_t
>
x_image_data
(
image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
input_v
.
data
(),
x_image_data
.
data
(),
in_dim
);
auto
*
x_image
=
x
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
image_shape
[
0
],
image_shape
[
1
],
x_image_data
.
data
());
LOG
(
INFO
)
<<
"x_image:"
<<
x_image
;
auto
*
out_image
=
out
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
image_shape
[
0
],
image_shape
[
1
]);
LOG
(
INFO
)
<<
"out_image:"
<<
out_image
;
kernel
->
Launch
();
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
Out
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
VLOG
(
4
)
<<
"--- Find the sync event for the target cl tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the target cl tensor."
;
}
std
::
unique_ptr
<
float
[]
>
out_ref
(
new
float
[
out_dim
.
production
()]);
slice_channel
(
input_v
.
data
(),
in_dim
,
out_ref
.
get
(),
2
,
5
);
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
image_shape
.
production
()
*
4
];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
image_shape
[
0
],
image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
float
*
out_data
=
new
float
[
image_shape
.
production
()
*
4
];
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
,
image_shape
,
out_dim
);
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
auto
abs_diff
=
abs
(
out_data
[
i
]
-
out_ref
[
i
]);
auto
relative_diff
=
COMPUTE_RELATIVE_DIFF
(
out_data
[
i
],
out_ref
[
i
]);
EXPECT_EQ
((
relative_diff
<=
FP16_MAX_DIFF
)
||
(
abs_diff
<=
FP16_MAX_DIFF
),
true
);
if
((
relative_diff
>
FP16_MAX_DIFF
)
&&
(
abs_diff
>
FP16_MAX_DIFF
))
{
LOG
(
ERROR
)
<<
"error idx:"
<<
i
<<
" out_data["
<<
i
<<
"]:"
<<
out_data
[
i
]
<<
" "
"out_ref["
<<
i
<<
"]:"
<<
out_ref
[
i
]
<<
" abs_diff:"
<<
abs_diff
<<
" relative_diff:"
<<
relative_diff
<<
" FP16_MAX_DIFF:"
<<
FP16_MAX_DIFF
;
}
}
}
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
slice
,
kOpenCL
,
kFP16
,
kImageDefault
,
image2d
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录