Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
66350fbe
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
66350fbe
编写于
7月 16, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
7月 16, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #587 from codeWorm2015/metal
correct cnn implementation
上级
63e8bb92
669a1f44
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
324 addition
and
73 deletion
+324
-73
metal/paddle-mobile-demo/paddle-mobile-demo.xcodeproj/xcuserdata/liuruilong.xcuserdatad/xcschemes/paddle-mobile-demo.xcscheme
...ruilong.xcuserdatad/xcschemes/paddle-mobile-demo.xcscheme
+91
-0
metal/paddle-mobile-demo/paddle-mobile-demo.xcodeproj/xcuserdata/liuruilong.xcuserdatad/xcschemes/xcschememanagement.plist
...liuruilong.xcuserdatad/xcschemes/xcschememanagement.plist
+9
-1
metal/paddle-mobile-demo/paddle-mobile-demo/ViewController.swift
...addle-mobile-demo/paddle-mobile-demo/ViewController.swift
+1
-0
metal/paddle-mobile/paddle-mobile.xcodeproj/xcuserdata/liuruilong.xcuserdatad/xcschemes/xcschememanagement.plist
...liuruilong.xcuserdatad/xcschemes/xcschememanagement.plist
+1
-1
metal/paddle-mobile/paddle-mobile/Common/MetalExtension.swift
...l/paddle-mobile/paddle-mobile/Common/MetalExtension.swift
+2
-2
metal/paddle-mobile/paddle-mobile/Executor.swift
metal/paddle-mobile/paddle-mobile/Executor.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/ConvAddBatchNormReluOp.swift
...bile/paddle-mobile/Operators/ConvAddBatchNormReluOp.swift
+11
-10
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddBatchNormReluKernel.swift
...mobile/Operators/Kernels/ConvAddBatchNormReluKernel.swift
+15
-5
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddKernel.swift
...obile/paddle-mobile/Operators/Kernels/ConvAddKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvKernel.metal
...e-mobile/paddle-mobile/Operators/Kernels/ConvKernel.metal
+158
-51
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvKernel.swift
...e-mobile/paddle-mobile/Operators/Kernels/ConvKernel.swift
+1
-1
metal/paddle-mobile/paddle-mobile/framework/Tensor.swift
metal/paddle-mobile/paddle-mobile/framework/Tensor.swift
+33
-0
未找到文件。
metal/paddle-mobile-demo/paddle-mobile-demo.xcodeproj/xcuserdata/liuruilong.xcuserdatad/xcschemes/paddle-mobile-demo.xcscheme
0 → 100644
浏览文件 @
66350fbe
<?xml version="1.0" encoding="UTF-8"?>
<Scheme
LastUpgradeVersion =
"0940"
version =
"1.3"
>
<BuildAction
parallelizeBuildables =
"YES"
buildImplicitDependencies =
"YES"
>
<BuildActionEntries>
<BuildActionEntry
buildForTesting =
"YES"
buildForRunning =
"YES"
buildForProfiling =
"YES"
buildForArchiving =
"YES"
buildForAnalyzing =
"YES"
>
<BuildableReference
BuildableIdentifier =
"primary"
BlueprintIdentifier =
"FC039B7D20E11C550081E9F8"
BuildableName =
"paddle-mobile-demo.app"
BlueprintName =
"paddle-mobile-demo"
ReferencedContainer =
"container:paddle-mobile-demo.xcodeproj"
>
</BuildableReference>
</BuildActionEntry>
</BuildActionEntries>
</BuildAction>
<TestAction
buildConfiguration =
"Debug"
selectedDebuggerIdentifier =
"Xcode.DebuggerFoundation.Debugger.LLDB"
selectedLauncherIdentifier =
"Xcode.DebuggerFoundation.Launcher.LLDB"
shouldUseLaunchSchemeArgsEnv =
"YES"
>
<Testables>
</Testables>
<MacroExpansion>
<BuildableReference
BuildableIdentifier =
"primary"
BlueprintIdentifier =
"FC039B7D20E11C550081E9F8"
BuildableName =
"paddle-mobile-demo.app"
BlueprintName =
"paddle-mobile-demo"
ReferencedContainer =
"container:paddle-mobile-demo.xcodeproj"
>
</BuildableReference>
</MacroExpansion>
<AdditionalOptions>
</AdditionalOptions>
</TestAction>
<LaunchAction
buildConfiguration =
"Debug"
selectedDebuggerIdentifier =
"Xcode.DebuggerFoundation.Debugger.LLDB"
selectedLauncherIdentifier =
"Xcode.DebuggerFoundation.Launcher.LLDB"
launchStyle =
"0"
useCustomWorkingDirectory =
"NO"
ignoresPersistentStateOnLaunch =
"NO"
debugDocumentVersioning =
"YES"
debugServiceExtension =
"internal"
allowLocationSimulation =
"YES"
>
<BuildableProductRunnable
runnableDebuggingMode =
"0"
>
<BuildableReference
BuildableIdentifier =
"primary"
BlueprintIdentifier =
"FC039B7D20E11C550081E9F8"
BuildableName =
"paddle-mobile-demo.app"
BlueprintName =
"paddle-mobile-demo"
ReferencedContainer =
"container:paddle-mobile-demo.xcodeproj"
>
</BuildableReference>
</BuildableProductRunnable>
<AdditionalOptions>
</AdditionalOptions>
</LaunchAction>
<ProfileAction
buildConfiguration =
"Release"
shouldUseLaunchSchemeArgsEnv =
"YES"
savedToolIdentifier =
""
useCustomWorkingDirectory =
"NO"
debugDocumentVersioning =
"YES"
>
<BuildableProductRunnable
runnableDebuggingMode =
"0"
>
<BuildableReference
BuildableIdentifier =
"primary"
BlueprintIdentifier =
"FC039B7D20E11C550081E9F8"
BuildableName =
"paddle-mobile-demo.app"
BlueprintName =
"paddle-mobile-demo"
ReferencedContainer =
"container:paddle-mobile-demo.xcodeproj"
>
</BuildableReference>
</BuildableProductRunnable>
</ProfileAction>
<AnalyzeAction
buildConfiguration =
"Debug"
>
</AnalyzeAction>
<ArchiveAction
buildConfiguration =
"Release"
revealArchiveInOrganizer =
"YES"
>
</ArchiveAction>
</Scheme>
metal/paddle-mobile-demo/paddle-mobile-demo.xcodeproj/xcuserdata/liuruilong.xcuserdatad/xcschemes/xcschememanagement.plist
浏览文件 @
66350fbe
...
...
@@ -7,7 +7,15 @@
<key>
paddle-mobile-demo.xcscheme
</key>
<dict>
<key>
orderHint
</key>
<integer>
4
</integer>
<integer>
3
</integer>
</dict>
</dict>
<key>
SuppressBuildableAutocreation
</key>
<dict>
<key>
FC039B7D20E11C550081E9F8
</key>
<dict>
<key>
primary
</key>
<true/>
</dict>
</dict>
</dict>
...
...
metal/paddle-mobile-demo/paddle-mobile-demo/ViewController.swift
浏览文件 @
66350fbe
...
...
@@ -40,6 +40,7 @@ class ViewController: UIViewController {
let
dest
=
device
.
makeTexture
(
descriptor
:
tmpTextureDes
)
let
scale
=
MPSImageLanczosScale
.
init
(
device
:
device
)
let
buffer
=
queue
.
makeCommandBuffer
()
scale
.
encode
(
commandBuffer
:
buffer
!
,
sourceTexture
:
input
,
destinationTexture
:
dest
!
)
buffer
?
.
addCompletedHandler
({
(
buffer
)
in
...
...
metal/paddle-mobile/paddle-mobile.xcodeproj/xcuserdata/liuruilong.xcuserdatad/xcschemes/xcschememanagement.plist
浏览文件 @
66350fbe
...
...
@@ -7,7 +7,7 @@
<key>
paddle-mobile.xcscheme
</key>
<dict>
<key>
orderHint
</key>
<integer>
3
</integer>
<integer>
4
</integer>
</dict>
</dict>
</dict>
...
...
metal/paddle-mobile/paddle-mobile/Common/MetalExtension.swift
浏览文件 @
66350fbe
...
...
@@ -103,11 +103,11 @@ public extension MTLTexture {
str
+=
"2d array count :
\(
width
*
height
*
depth
*
4
)
\n
"
if
stridable
{
for
j
in
stride
(
from
:
0
,
to
:
width
*
height
*
depth
*
4
,
by
:
width
*
height
*
depth
*
4
/
100
){
str
+=
"
\(
p
[
j
]
)
"
str
+=
"
index
\(
j
)
:
\(
p
[
j
]
)
"
}
}
else
{
for
j
in
0
..<
width
*
height
*
depth
*
4
{
str
+=
"
\(
p
[
j
]
)
"
str
+=
"
index
\(
j
)
:
\(
p
[
j
]
)
"
}
}
...
...
metal/paddle-mobile/paddle-mobile/Executor.swift
浏览文件 @
66350fbe
...
...
@@ -55,7 +55,7 @@ public class Executor<P: PrecisionType> {
device
=
inDevice
queue
=
inQueue
for
block
in
inProgram
.
programDesc
.
blocks
{
for
i
in
0
..<
2
{
for
i
in
0
..<
block
.
ops
.
count
{
let
op
=
block
.
ops
[
i
]
do
{
let
op
=
try
OpCreator
<
P
>.
shared
.
creat
(
device
:
inDevice
,
opDesc
:
op
,
scope
:
inProgram
.
scope
)
...
...
metal/paddle-mobile/paddle-mobile/Operators/ConvAddBatchNormReluOp.swift
浏览文件 @
66350fbe
...
...
@@ -107,16 +107,17 @@ class ConvAddBatchNormReluOp<P: PrecisionType>: Operator<ConvAddBatchNormReluKer
}
func
delogOutput
()
{
let
_
:
P
?
=
para
.
input
.
metalTexture
.
logDesc
(
header
:
"conv add batchnorm relu input: "
,
stridable
:
false
)
para
.
filter
.
logDataPointer
(
header
:
"filter data pointer: "
)
print
(
"filter:
\(
para
.
filter
)
"
)
print
(
"biase:
\(
para
.
bias
)
"
)
let
_
:
P
?
=
para
.
newBiase
?
.
logDesc
(
header
:
"new biase: "
,
stridable
:
false
)
let
_
:
P
?
=
para
.
newScale
?
.
logDesc
(
header
:
"new scale: "
,
stridable
:
false
)
let
_
:
P
?
=
para
.
output
.
metalTexture
.
logDesc
(
header
:
"conv add batchnorm relu output: "
,
stridable
:
true
)
// let _: P? = para.input.metalTexture.logDesc(header: "conv add batchnorm relu input: ", stridable: false)
// para.filter.logDataPointer(header: "filter data pointer: ")
//
// print("filter: \(para.filter)")
// print("biase: \(para.bias)")
// print("padding: \(para.paddings)")
// print("stride: \(para.stride)")
//
// let _: P? = para.newBiase?.logDesc(header: "new biase: ", stridable: false)
// let _: P? = para.newScale?.logDesc(header: "new scale: ", stridable: false)
// let _: P? = para.output.metalTexture.logDesc(header: "conv add batchnorm relu output: ", stridable: true)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddBatchNormReluKernel.swift
浏览文件 @
66350fbe
...
...
@@ -18,10 +18,22 @@ class ConvAddBatchNormReluKernel<P: PrecisionType>: Kernel, Computable {
var
metalParam
:
MetalConvParam
!
required
init
(
device
:
MTLDevice
,
param
:
ConvAddBatchNormReluParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add_batch_norm_relu_3x3"
)
let
offsetX
=
param
.
filter
.
dim
[
2
]
/
2
-
Int
(
param
.
paddings
[
0
])
let
offsetY
=
param
.
filter
.
dim
[
1
]
/
2
-
Int
(
param
.
paddings
[
1
])
if
param
.
filter
.
width
==
1
&&
param
.
filter
.
height
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add_batch_norm_relu_1x1"
)
}
else
if
param
.
filter
.
channel
==
1
{
super
.
init
(
device
:
device
,
inFunctionName
:
"depthwise_conv_add_batch_norm_relu_1x1"
)
}
else
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv_add_batch_norm_relu_3x3"
)
}
let
offsetX
=
param
.
filter
.
width
/
2
-
Int
(
param
.
paddings
[
0
])
let
offsetY
=
param
.
filter
.
height
/
2
-
Int
(
param
.
paddings
[
1
])
print
(
"offset x:
\(
offsetX
)
"
)
print
(
"offset y:
\(
offsetY
)
"
)
let
offsetZ
=
0.0
metalParam
=
MetalConvParam
.
init
(
offsetX
:
Int16
(
offsetX
),
offsetY
:
Int16
(
offsetY
),
offsetZ
:
Int16
(
offsetZ
),
strideX
:
UInt16
(
param
.
stride
[
0
]),
strideY
:
UInt16
(
param
.
stride
[
1
]),
paddedZ
:
UInt16
(
param
.
input
.
metalTexture
.
arrayLength
*
4
-
param
.
input
.
dim
[
3
]))
...
...
@@ -69,6 +81,4 @@ class ConvAddBatchNormReluKernel<P: PrecisionType>: Kernel, Computable {
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
.
metalTexture
)
encoder
.
endEncoding
()
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvAddKernel.swift
浏览文件 @
66350fbe
...
...
@@ -16,7 +16,7 @@ import Foundation
class
ConvAddKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
{
required
init
(
device
:
MTLDevice
,
param
:
ConvAddParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
3x3
"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
_add_1x1
"
)
}
...
...
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvKernel.metal
浏览文件 @
66350fbe
...
...
@@ -24,41 +24,6 @@ struct MetalConvParam {
};
kernel void conv3x3(texture2d_array<half, access::sample> inTexture [[texture(0)]],
texture2d_array<half, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device half4 *weights [[buffer(1)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
short2 posInInput = short2(gid.xy) + short2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint wightSliceCount = 36;
uint weithTo = gid.z * wightSliceCount * inTexture.get_array_size();
half4 output = 0.0;
for (uint i = 0; i < inTexture.get_array_size(); ++i) {
half4 input[9];
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
half4 weight = weights[weithTo + wightSliceCount * i + j * 4];
output += dot(input[j], weight);
}
}
outTexture.write(output, gid.xy, gid.z);
}
//kernel void conv_add_batch_norm_relu_3x3(texture2d_array<half, access::sample> inTexture [[texture(0)]],
// texture2d_array<half, access::write> outTexture [[texture(1)]],
// constant MetalConvParam ¶m [[buffer(0)]],
...
...
@@ -119,30 +84,172 @@ kernel void conv_add_batch_norm_relu_3x3(texture2d_array<float, access::sample>
short2 posInInput = short2(gid.xy) + short2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint wightSliceCount = 36;
uint weithTo = gid.z * wightSliceCount * inTexture.get_array_size();
float4 output = 0.0;
for (uint i = 0; i < inTexture.get_array_size(); ++i) {
float4 input[9];
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
const uint kernelHXW = 9;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input[9];
for (uint i = 0; i < input_arr_size; ++i) {
input[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), i);
input[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), i);
input[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), i);
input[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), i);
input[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
input[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), i);
input[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), i);
input[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), i);
input[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), i);
for (int j = 0; j < 9; ++j) {
float4 weight = weights[weithTo + wightSliceCount * i + j * 4];
output += dot(input[j], weight);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.x += dot(input[j], weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.y += dot(input[j], weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.z += dot(input[j], weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + j * input_arr_size + i];
output.w += dot(input[j], weight_w);
}
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
short2 posInInput = short2(gid.xy) + short2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
kernel void conv_add_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
short2 posInInput = short2(gid.xy) + short2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 1;
uint input_arr_size = inTexture.get_array_size();
uint weithTo = gid.z * kernelHXW * input_arr_size * 4;
float4 output = float4(0.0);
float4 input;
for (uint i = 0; i < input_arr_size; ++i) {
input = inTexture.sample(sample, float2(posInInput.x, posInInput.y), i);
float4 weight_x = weights[weithTo + 0 * kernelHXW * input_arr_size + i];
output.x += dot(input, weight_x);
float4 weight_y = weights[weithTo + 1 * kernelHXW * input_arr_size + i];
output.y += dot(input, weight_y);
float4 weight_z = weights[weithTo + 2 * kernelHXW * input_arr_size + i];
output.z += dot(input, weight_z);
float4 weight_w = weights[weithTo + 3 * kernelHXW * input_arr_size + i];
output.w += dot(input, weight_w);
}
output = output + biase[gid.z];
outTexture.write(output, gid.xy, gid.z);
}
kernel void depthwise_conv_add_batch_norm_relu_1x1(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
constant MetalConvParam ¶m [[buffer(0)]],
const device float4 *weights [[buffer(1)]],
const device float4 *biase [[buffer(2)]],
const device float4 *new_scale [[buffer(3)]],
const device float4 *new_biase [[buffer(4)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
uint output_slice = gid.z;
short2 posInInput = short2(gid.xy) + short2(param.offsetX, param.offsetY);
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
const uint kernelHXW = 9;
uint weithTo = gid.z * kernelHXW;
float4 output = float4(0.0);
float4 inputs[9];
inputs[0] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y - 1), output_slice);
inputs[1] = inTexture.sample(sample, float2(posInInput.x, posInInput.y - 1), output_slice);
inputs[2] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y - 1), output_slice);
inputs[3] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y), output_slice);
inputs[4] = inTexture.sample(sample, float2(posInInput.x, posInInput.y), output_slice);
inputs[5] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y), output_slice);
inputs[6] = inTexture.sample(sample, float2(posInInput.x - 1, posInInput.y + 1), output_slice);
inputs[7] = inTexture.sample(sample, float2(posInInput.x, posInInput.y + 1), output_slice);
inputs[8] = inTexture.sample(sample, float2(posInInput.x + 1, posInInput.y + 1), output_slice);
for (int j = 0; j < 9; ++j) {
float4 input = inputs[j];
float4 weight = weights[weithTo + j];
output.x += input.x * weight.x;
output.y += input.y * weight.y;
output.z += input.z * weight.z;
output.w += input.w * weight.w;
}
output = fmax((output + biase[gid.z]) * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/ConvKernel.swift
浏览文件 @
66350fbe
...
...
@@ -27,7 +27,7 @@ struct MetalConvParam {
class
ConvKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
{
var
metalParam
:
MetalConvParam
!
required
init
(
device
:
MTLDevice
,
param
:
ConvParam
<
P
>
)
{
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
3x3
"
)
super
.
init
(
device
:
device
,
inFunctionName
:
"conv
_add_1x1
"
)
let
offsetX
=
param
.
filter
.
dim
[
2
]
/
2
-
Int
(
param
.
paddings
[
0
])
let
offsetY
=
param
.
filter
.
dim
[
1
]
/
2
-
Int
(
param
.
paddings
[
1
])
let
offsetZ
=
0.0
...
...
metal/paddle-mobile/paddle-mobile/framework/Tensor.swift
浏览文件 @
66350fbe
...
...
@@ -98,6 +98,8 @@ class Tensor<P: PrecisionType>: Tensorial {
buffer
=
device
.
makeBuffer
(
length
:
count
*
MemoryLayout
<
P
>.
stride
)
if
C
==
paddedC
{
buffer
?
.
contents
()
.
copyMemory
(
from
:
data
.
pointer
,
byteCount
:
count
*
MemoryLayout
<
P
>.
stride
)
}
else
if
C
==
1
{
buffer
?
.
contents
()
.
copyMemory
(
from
:
data
.
pointer
,
byteCount
:
count
*
MemoryLayout
<
P
>.
stride
)
}
else
{
var
tmpPointer
=
data
.
pointer
var
dstPtr
=
buffer
?
.
contents
()
.
bindMemory
(
to
:
P
.
self
,
capacity
:
count
)
...
...
@@ -121,6 +123,37 @@ class Tensor<P: PrecisionType>: Tensorial {
data
.
release
()
}
var
width
:
Int
{
get
{
if
dim
.
cout
()
==
4
{
return
dim
[
1
]
}
else
{
fatalError
()
}
}
}
var
height
:
Int
{
get
{
if
dim
.
cout
()
==
4
{
return
dim
[
2
]
}
else
{
fatalError
()
}
}
}
var
channel
:
Int
{
get
{
if
dim
.
cout
()
==
4
{
return
dim
[
3
]
}
else
{
fatalError
()
}
}
}
func
NCHW2NHWC
(
newPtr
:
UnsafeMutablePointer
<
P
>
)
{
let
N
=
dim
[
0
]
let
C
=
dim
[
1
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录