Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
661f49a3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
661f49a3
编写于
10月 18, 2018
作者:
R
Ray Liu
提交者:
GitHub
10月 18, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1138 from codeWorm2015/opencl
update conv kernel
上级
c7c428b5
9bcb44d6
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
116 addition
and
70 deletion
+116
-70
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+11
-6
src/framework/executor.cpp
src/framework/executor.cpp
+1
-1
src/operators/feed_op.cpp
src/operators/feed_op.cpp
+3
-1
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
+13
-5
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
+13
-6
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
+13
-6
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+13
-8
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+12
-0
src/operators/kernel/fpga/feed-kernel.cpp
src/operators/kernel/fpga/feed-kernel.cpp
+37
-37
未找到文件。
src/framework/cl/cl_image.h
浏览文件 @
661f49a3
...
...
@@ -257,16 +257,21 @@ class CLImage {
float
*
p
=
tensor_data
;
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
for
(
int
c
=
0
;
c
<
c_block_
*
4
;
c
++
)
{
size_t
i1
=
i0
+
(
c
/
4
)
*
W
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
// int x = (n * width * H + h * width + (c / 4) * W + w) * 4 + (c
// % 4);
imageData
[
i2
]
=
Float2Half
(
*
p
);
i2
+=
4
;
p
++
;
if
(
c
<
C
)
{
// int x = (n * width * H + h * width + (c / 4) * W + w) * 4 +
// (c % 4);
imageData
[
i2
]
=
Float2Half
(
*
p
);
i2
+=
4
;
p
++
;
}
else
{
imageData
[
i2
]
=
0.0
;
i2
+=
4
;
}
}
i1
+=
width
;
}
...
...
src/framework/executor.cpp
浏览文件 @
661f49a3
...
...
@@ -37,7 +37,7 @@ limitations under the License. */
#include "framework/cl/cl_image.h"
#endif
int
debug_to
=
3
;
int
debug_to
=
2
;
namespace
paddle_mobile
{
namespace
framework
{
...
...
src/operators/feed_op.cpp
浏览文件 @
661f49a3
...
...
@@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "feed_op.h"
#include "operators/feed_op.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -22,6 +23,7 @@ void FeedOp<DeviceType, T>::InferShape() const {
out_dims
[
0
]
=
this
->
param_
.
BatchSize
();
this
->
param_
.
Out
()
->
Resize
(
out_dims
);
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
浏览文件 @
661f49a3
...
...
@@ -65,6 +65,14 @@ __kernel void conv_3x3(__private const int global_size_dim0,
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
if
(
out_c
>=
global_size_dim0
|
|
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
printf(" out of range ");
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
...
...
@@ -135,24 +143,24 @@ __kernel void conv_3x3(__private const int global_size_dim0,
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(
pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
(ushort4)(
in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
...
...
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
浏览文件 @
661f49a3
...
...
@@ -63,6 +63,14 @@ __kernel void conv_3x3(__private const int global_size_dim0,
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
if
(
out_c
>=
global_size_dim0
|
|
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
printf(" out of range ");
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
...
...
@@ -133,24 +141,24 @@ __kernel void conv_3x3(__private const int global_size_dim0,
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(
pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
(ushort4)(
in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
...
...
@@ -169,7 +177,6 @@ __kernel void conv_3x3(__private const int global_size_dim0,
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
浏览文件 @
661f49a3
...
...
@@ -44,6 +44,14 @@ __kernel void conv_3x3(__private const int global_size_dim0,
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
if
(
out_c
>=
global_size_dim0
|
|
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
printf(" out of range ");
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
...
...
@@ -114,24 +122,24 @@ __kernel void conv_3x3(__private const int global_size_dim0,
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(
pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
(ushort4)(
in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
...
...
@@ -150,7 +158,6 @@ __kernel void conv_3x3(__private const int global_size_dim0,
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
661f49a3
...
...
@@ -54,6 +54,14 @@ __kernel void conv_3x3(__private const int global_size_dim0,
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
if
(
out_c
>=
global_size_dim0
|
|
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
printf(" out of range ");
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
...
...
@@ -124,24 +132,24 @@ __kernel void conv_3x3(__private const int global_size_dim0,
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)(
pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
(ushort4)(
in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block
.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));
for (int j = 0; j < 9; ++j) {
int2 fuck;
fuck.x = i * 3 + j % 3;
fuck.y = out_c * 4 * 3 + 0 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, fuck);
output.x += dot(input[j], weight_x);
fuck.y = out_c * 4 * 3 + 1 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, fuck);
output.y += dot(input[j], weight_y);
fuck.y = out_c * 4 * 3 + 2 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, fuck);
output.z += dot(input[j], weight_z);
fuck.y = out_c * 4 * 3 + 3 *
out_c *
3 + j / 3;
fuck.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, fuck);
output.w += dot(input[j], weight_w);
}
...
...
@@ -158,9 +166,6 @@ __kernel void conv_3x3(__private const int global_size_dim0,
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void depth_conv_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
661f49a3
...
...
@@ -165,6 +165,18 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
DLOG
<<
" c block "
<<
c_block
;
DLOG
<<
" w "
<<
w
;
DLOG
<<
" nh "
<<
nh
;
DLOG
<<
" stride "
<<
stride
;
DLOG
<<
" offset "
<<
offset
;
DLOG
<<
" input_c "
<<
input_c
;
DLOG
<<
" dilation "
<<
dilation
;
DLOG
<<
" input width "
<<
input_width
;
DLOG
<<
" input height "
<<
input_height
;
DLOG
<<
" output width "
<<
output_width
;
DLOG
<<
" output height "
<<
output_height
;
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
...
...
src/operators/kernel/fpga/feed-kernel.cpp
浏览文件 @
661f49a3
...
...
@@ -15,41 +15,41 @@ limitations under the License. */
#include "operators/kernel/feed_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
FeedKernel
<
FPGA
,
float
>::
Init
(
FeedParam
<
FPGA
>
*
param
)
{
Tensor
*
output
=
param
->
Out
();
fpga
::
format_fp16_ofm
(
output
);
return
true
;
}
template
<
>
void
FeedKernel
<
FPGA
,
float
>::
Compute
(
const
FeedParam
<
FPGA
>
&
param
)
{
auto
input
=
reinterpret_cast
<
Tensor
*>
(
const_cast
<
LoDTensor
*>
(
param
.
InputX
()));
auto
input_ptr
=
input
->
data
<
float
>
();
fpga
::
format_image
(
input
);
Tensor
*
output
=
param
.
Out
();
auto
output_ptr
=
output
->
data
<
float
>
();
fpga
::
BypassArgs
args
=
{
fpga
::
DATA_TYPE_FP32
};
args
.
input_data_type
=
fpga
::
DATA_TYPE_FP32
;
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP16
;
args
.
input_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
output_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
image
.
address
=
reinterpret_cast
<
void
*>
(
input_ptr
);
args
.
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
args
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
args
.
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
args
.
image
.
pad_height
=
0
;
args
.
image
.
pad_width
=
0
;
args
.
output
.
address
=
output_ptr
;
args
.
output
.
scale_address
=
output
->
scale
;
fpga
::
PerformBypass
(
args
);
}
template
class
FeedKernel
<
FPGA
,
float
>;
}
// namespace operators
namespace
operators
{
template
<
>
bool
FeedKernel
<
FPGA
,
float
>::
Init
(
FeedParam
<
FPGA
>
*
param
)
{
Tensor
*
output
=
param
->
Out
();
fpga
::
format_fp16_ofm
(
output
);
return
true
;
}
template
<
>
void
FeedKernel
<
FPGA
,
float
>::
Compute
(
const
FeedParam
<
FPGA
>
&
param
)
{
auto
input
=
reinterpret_cast
<
Tensor
*>
(
const_cast
<
LoDTensor
*>
(
param
.
InputX
()));
auto
input_ptr
=
input
->
data
<
float
>
();
fpga
::
format_image
(
input
);
Tensor
*
output
=
param
.
Out
();
auto
output_ptr
=
output
->
data
<
float
>
();
fpga
::
BypassArgs
args
=
{
fpga
::
DATA_TYPE_FP32
};
args
.
input_data_type
=
fpga
::
DATA_TYPE_FP32
;
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP16
;
args
.
input_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
output_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
image
.
address
=
reinterpret_cast
<
void
*>
(
input_ptr
);
args
.
image
.
channels
=
(
uint32_t
)
input
->
dims
()[
1
];
args
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
2
];
args
.
image
.
width
=
(
uint32_t
)
input
->
dims
()[
3
];
args
.
image
.
pad_height
=
0
;
args
.
image
.
pad_width
=
0
;
args
.
output
.
address
=
output_ptr
;
args
.
output
.
scale_address
=
output
->
scale
;
fpga
::
PerformBypass
(
args
);
}
template
class
FeedKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录