Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
6562c696
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6562c696
编写于
7月 12, 2018
作者:
W
WangLiu
提交者:
GitHub
7月 12, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #562 from cocodark/develop
add jni interface to accept yuv420 as input
上级
52353622
7b677197
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
173 addition
and
28 deletion
+173
-28
demo/android/PaddleMobile_Android/app/src/main/java/com/baidu/paddle/MainActivity.java
...roid/app/src/main/java/com/baidu/paddle/MainActivity.java
+6
-5
demo/android/PaddleMobile_Android/app/src/main/java/com/baidu/paddle/PML.java
...obile_Android/app/src/main/java/com/baidu/paddle/PML.java
+18
-5
doc/development_doc.md
doc/development_doc.md
+35
-11
src/jni/paddle_mobile_jni.cpp
src/jni/paddle_mobile_jni.cpp
+100
-6
src/jni/paddle_mobile_jni.h
src/jni/paddle_mobile_jni.h
+13
-0
src/operators/math/pooling.cpp
src/operators/math/pooling.cpp
+1
-1
未找到文件。
demo/android/PaddleMobile_Android/app/src/main/java/com/baidu/paddle/MainActivity.java
浏览文件 @
6562c696
...
@@ -58,6 +58,7 @@ public class MainActivity extends Activity {
...
@@ -58,6 +58,7 @@ public class MainActivity extends Activity {
private
Context
mContext
=
null
;
private
Context
mContext
=
null
;
private
int
inputSize
=
224
;
private
int
inputSize
=
224
;
private
int
[]
ddims
=
{
1
,
3
,
224
,
224
};
enum
TYPE
{
enum
TYPE
{
googlenet
googlenet
...
@@ -121,14 +122,14 @@ public class MainActivity extends Activity {
...
@@ -121,14 +122,14 @@ public class MainActivity extends Activity {
String
assetPath
=
"pml_demo"
;
String
assetPath
=
"pml_demo"
;
String
sdcardPath
=
Environment
.
getExternalStorageDirectory
()
String
sdcardPath
=
Environment
.
getExternalStorageDirectory
()
+
File
.
separator
+
assetPath
+
File
.
separator
+
type
;
+
File
.
separator
+
assetPath
+
File
.
separator
+
type
;
//
PML.load(sdcardPath);
PML
.
load
(
sdcardPath
);
String
modelPath
=
Environment
.
getExternalStorageDirectory
()
String
modelPath
=
Environment
.
getExternalStorageDirectory
()
+
File
.
separator
+
assetPath
+
+
File
.
separator
+
assetPath
+
File
.
separator
+
"googlenet_combine"
+
File
.
separator
+
"model"
;
File
.
separator
+
"googlenet_combine"
+
File
.
separator
+
"model"
;
String
paramPath
=
Environment
.
getExternalStorageDirectory
()
String
paramPath
=
Environment
.
getExternalStorageDirectory
()
+
File
.
separator
+
assetPath
+
+
File
.
separator
+
assetPath
+
File
.
separator
+
"googlenet_combine"
+
File
.
separator
+
"params"
;
File
.
separator
+
"googlenet_combine"
+
File
.
separator
+
"params"
;
PML
.
loadCombined
(
modelPath
,
paramPath
);
//
PML.loadCombined(modelPath, paramPath);
}
}
});
});
...
@@ -351,8 +352,8 @@ public class MainActivity extends Activity {
...
@@ -351,8 +352,8 @@ public class MainActivity extends Activity {
@Override
@Override
public
void
onBackPressed
()
{
public
void
onBackPressed
()
{
super
.
onBackPressed
();
super
.
onBackPressed
();
Log
.
d
(
"
mdl"
,
"md
l clear"
);
Log
.
d
(
"
pml"
,
"pm
l clear"
);
// clear
md
l
// clear
pm
l
PML
.
clear
();
PML
.
clear
();
}
}
...
@@ -402,7 +403,7 @@ public class MainActivity extends Activity {
...
@@ -402,7 +403,7 @@ public class MainActivity extends Activity {
float
[]
result
=
null
;
float
[]
result
=
null
;
try
{
try
{
long
start
=
System
.
currentTimeMillis
();
long
start
=
System
.
currentTimeMillis
();
result
=
PML
.
predict
(
inputData
);
result
=
PML
.
predict
Image
(
inputData
,
ddims
);
long
end
=
System
.
currentTimeMillis
();
long
end
=
System
.
currentTimeMillis
();
time
=
end
-
start
;
time
=
end
-
start
;
...
...
demo/android/PaddleMobile_Android/app/src/main/java/com/baidu/paddle/PML.java
浏览文件 @
6562c696
...
@@ -2,14 +2,14 @@ package com.baidu.paddle;
...
@@ -2,14 +2,14 @@ package com.baidu.paddle;
public
class
PML
{
public
class
PML
{
/**
/**
* Load
* Load
seperated parameters
* @param model
Path
* @param model
Dir
* @return
* @return
*/
*/
public
static
native
boolean
load
(
String
model
Path
);
public
static
native
boolean
load
(
String
model
Dir
);
/**
/**
* Load
* Load
combined parameters
* @param modelPath
* @param modelPath
* @param paramPath
* @param paramPath
* @return
* @return
...
@@ -23,7 +23,20 @@ public class PML {
...
@@ -23,7 +23,20 @@ public class PML {
* @param buf
* @param buf
* @return
* @return
*/
*/
public
static
native
float
[]
predict
(
float
[]
buf
);
public
static
native
float
[]
predictImage
(
float
[]
buf
,
int
[]
ddims
);
/**
*
* @param buf yuv420格式的字节数组
* @param imgWidth yuv数据的宽
* @param imgHeight yuv数据的高
* @param ddims 输入数据的形状
* @param meanValues 模型训练时各通道的均值
* @return
*/
public
static
native
float
[]
predictYuv
(
byte
[]
buf
,
int
imgWidth
,
int
imgHeight
,
int
[]
ddims
,
float
[]
meanValues
);
public
static
native
void
clear
();
public
static
native
void
clear
();
...
...
doc/development_doc.md
浏览文件 @
6562c696
...
@@ -192,27 +192,51 @@ which to test :
...
@@ -192,27 +192,51 @@ which to test :
##部署
##部署
Android应用可通过JNI接口调用底层C/C++,paddle-mobile对外提供的JNI接口如下:
Android应用可通过JNI接口调用底层C/C++,paddle-mobile对外提供的JNI接口如下:
##### 1 load接口 加载模型参数
##### 1 load接口
加载模型参数
-
用于加载参数文件分散的模型
```
```
/*
/**
*@param modelPath 模型文件路径
* Load seperated parameters
*@return jboolean
* @param modelDir
*/
* @return
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
*/
jclass thiz,
public static native boolean load(String modelDir);
jstring modelPath);
```
-
用于加载参数文件合并的模型文件
```
```
/**
* Load combined parameters
* @param modelPath
* @param paramPath
* @return
*/
public static native boolean loadCombined(String modelPath,String paramPath);
```
##### 2 predict接口 执行预测
##### 2 predict接口 执行预测
-
接受预处理过的RGB数组的predict接口
```
```
/**
/**
*@param buf 输入数据
*@param buf 输入数据
*@return 输出数据
*@return 输出数据
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predict(
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predict
Image
(
JNIEnv *env, jclass thiz, jfloatArray buf);
JNIEnv *env, jclass thiz, jfloatArray buf);
```
```
-
接受原始yuv数据的predict接口
```
/**
*
* @param buf yuv420格式的字节数组
* @param imgWidth yuv数据的宽
* @param imgHeight yuv数据的高
* @param ddims 输入数据的形状
* @param meanValues 模型训练时各通道的均值
* @return
*/
public static native float[] predictYuv(byte[] buf, int imgWidth, int imgHeight, int[] ddims, float[]meanValues);
```
##### 3 clear接口 销毁实例、清理内存操作
##### 3 clear接口 销毁实例、清理内存操作
```
```
...
...
src/jni/paddle_mobile_jni.cpp
浏览文件 @
6562c696
...
@@ -62,15 +62,24 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
...
@@ -62,15 +62,24 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
JNIEXPORT
jboolean
JNICALL
Java_com_baidu_paddle_PML_loadCombined
(
JNIEXPORT
jboolean
JNICALL
Java_com_baidu_paddle_PML_loadCombined
(
JNIEnv
*
env
,
jclass
thiz
,
jstring
modelPath
,
jstring
paramPath
)
{
JNIEnv
*
env
,
jclass
thiz
,
jstring
modelPath
,
jstring
paramPath
)
{
ANDROIDLOGI
(
"load invoked"
);
ANDROIDLOGI
(
"load
Combined
invoked"
);
bool
optimize
=
true
;
bool
optimize
=
true
;
return
getPaddleMobileInstance
()
->
Load
(
jstring2cppstring
(
env
,
modelPath
),
return
getPaddleMobileInstance
()
->
Load
(
jstring2cppstring
(
env
,
modelPath
),
jstring2cppstring
(
env
,
paramPath
),
jstring2cppstring
(
env
,
paramPath
),
optimize
);
optimize
);
}
}
JNIEXPORT
jfloatArray
JNICALL
JNIEXPORT
jfloatArray
JNICALL
Java_com_baidu_paddle_PML_predictImage
(
Java_com_baidu_paddle_PML_predict
(
JNIEnv
*
env
,
jclass
thiz
,
jfloatArray
buf
)
{
JNIEnv
*
env
,
jclass
thiz
,
jfloatArray
buf
,
jintArray
ddims
)
{
ANDROIDLOGI
(
"predictImage invoked"
);
jsize
ddim_size
=
env
->
GetArrayLength
(
ddims
);
if
(
ddim_size
!=
4
)
{
ANDROIDLOGE
(
"ddims size not equal to 4"
);
}
jint
*
ddim_ptr
=
env
->
GetIntArrayElements
(
ddims
,
NULL
);
framework
::
DDim
ddim
=
framework
::
make_ddim
(
{
ddim_ptr
[
0
],
ddim_ptr
[
1
],
ddim_ptr
[
2
],
ddim_ptr
[
3
]});
int
length
=
framework
::
product
(
ddim
);
jfloatArray
result
=
NULL
;
jfloatArray
result
=
NULL
;
int
count
=
0
;
int
count
=
0
;
float
*
dataPointer
=
nullptr
;
float
*
dataPointer
=
nullptr
;
...
@@ -78,17 +87,102 @@ Java_com_baidu_paddle_PML_predict(JNIEnv *env, jclass thiz, jfloatArray buf) {
...
@@ -78,17 +87,102 @@ Java_com_baidu_paddle_PML_predict(JNIEnv *env, jclass thiz, jfloatArray buf) {
dataPointer
=
env
->
GetFloatArrayElements
(
buf
,
NULL
);
dataPointer
=
env
->
GetFloatArrayElements
(
buf
,
NULL
);
}
}
framework
::
Tensor
input
;
framework
::
Tensor
input
;
framework
::
DDim
ddim
=
framework
::
make_ddim
({
1
,
3
,
224
,
224
});
input
.
Resize
(
ddim
);
input
.
Resize
(
ddim
);
auto
input_ptr
=
input
.
mutable_data
<
float
>
();
auto
input_ptr
=
input
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
framework
::
product
(
ddim
)
;
i
++
)
{
for
(
int
i
=
0
;
i
<
length
;
i
++
)
{
input_ptr
[
i
]
=
dataPointer
[
i
];
input_ptr
[
i
]
=
dataPointer
[
i
];
}
}
auto
output
=
shared_paddle_mobile_instance
->
Predict
(
input
);
auto
output
=
shared_paddle_mobile_instance
->
Predict
(
input
);
count
=
output
->
numel
();
count
=
output
->
numel
();
result
=
env
->
NewFloatArray
(
count
);
result
=
env
->
NewFloatArray
(
count
);
env
->
SetFloatArrayRegion
(
result
,
0
,
count
,
output
->
data
<
float
>
());
env
->
SetFloatArrayRegion
(
result
,
0
,
count
,
output
->
data
<
float
>
());
ANDROIDLOGI
(
"predict finished"
);
env
->
ReleaseIntArrayElements
(
ddims
,
ddim_ptr
,
0
);
ANDROIDLOGI
(
"predictImage finished"
);
return
result
;
}
inline
int
yuv_to_rgb
(
int
y
,
int
u
,
int
v
,
float
*
r
,
float
*
g
,
float
*
b
)
{
int
r1
=
(
int
)(
y
+
1.370705
*
(
v
-
128
));
int
g1
=
(
int
)(
y
-
0.698001
*
(
u
-
128
)
-
0.703125
*
(
v
-
128
));
int
b1
=
(
int
)(
y
+
1.732446
*
(
u
-
128
));
r1
=
(
int
)
fminf
(
255
,
fmaxf
(
0
,
r1
));
g1
=
(
int
)
fminf
(
255
,
fmaxf
(
0
,
g1
));
b1
=
(
int
)
fminf
(
255
,
fmaxf
(
0
,
b1
));
*
r
=
r1
;
*
g
=
g1
;
*
b
=
b1
;
return
0
;
}
void
convert_nv21_to_matrix
(
uint8_t
*
nv21
,
float
*
matrix
,
int
width
,
int
height
,
int
targetWidth
,
int
targetHeight
,
float
*
means
)
{
const
uint8_t
*
yData
=
nv21
;
const
uint8_t
*
vuData
=
nv21
+
width
*
height
;
const
int
yRowStride
=
width
;
const
int
vuRowStride
=
width
;
float
scale_x
=
width
*
1.0
/
targetWidth
;
float
scale_y
=
height
*
1.0
/
targetHeight
;
for
(
int
j
=
0
;
j
<
targetHeight
;
++
j
)
{
int
y
=
j
*
scale_y
;
const
uint8_t
*
pY
=
yData
+
y
*
yRowStride
;
const
uint8_t
*
pVU
=
vuData
+
(
y
>>
1
)
*
vuRowStride
;
for
(
int
i
=
0
;
i
<
targetWidth
;
++
i
)
{
int
x
=
i
*
scale_x
;
const
int
offset
=
((
x
>>
1
)
<<
1
);
float
r
=
0
;
float
g
=
0
;
float
b
=
0
;
yuv_to_rgb
(
pY
[
x
],
pVU
[
offset
+
1
],
pVU
[
offset
],
&
r
,
&
g
,
&
b
);
int
r_index
=
j
*
targetWidth
+
i
;
int
g_index
=
r_index
+
targetWidth
*
targetHeight
;
int
b_index
=
g_index
+
targetWidth
*
targetHeight
;
matrix
[
r_index
]
=
r
-
means
[
0
];
matrix
[
g_index
]
=
g
-
means
[
1
];
matrix
[
b_index
]
=
b
-
means
[
2
];
}
}
}
JNIEXPORT
jfloatArray
JNICALL
Java_com_baidu_paddle_PML_predictYuv
(
JNIEnv
*
env
,
jclass
thiz
,
jbyteArray
yuv_
,
jint
imgwidth
,
jint
imgHeight
,
jintArray
ddims
,
jfloatArray
meanValues
)
{
ANDROIDLOGI
(
"predictYuv invoked"
);
jsize
ddim_size
=
env
->
GetArrayLength
(
ddims
);
if
(
ddim_size
!=
4
)
{
ANDROIDLOGE
(
"ddims size not equal to 4"
);
}
jint
*
ddim_ptr
=
env
->
GetIntArrayElements
(
ddims
,
NULL
);
framework
::
DDim
ddim
=
framework
::
make_ddim
(
{
ddim_ptr
[
0
],
ddim_ptr
[
1
],
ddim_ptr
[
2
],
ddim_ptr
[
3
]});
int
length
=
framework
::
product
(
ddim
);
float
matrix
[
length
];
jbyte
*
yuv
=
env
->
GetByteArrayElements
(
yuv_
,
NULL
);
float
*
meansPointer
=
nullptr
;
if
(
nullptr
!=
meanValues
)
{
meansPointer
=
env
->
GetFloatArrayElements
(
meanValues
,
NULL
);
}
convert_nv21_to_matrix
((
uint8_t
*
)
yuv
,
matrix
,
imgwidth
,
imgHeight
,
ddim
[
3
],
ddim
[
2
],
meansPointer
);
jfloatArray
result
=
NULL
;
int
count
=
0
;
framework
::
Tensor
input
;
input
.
Resize
(
ddim
);
auto
input_ptr
=
input
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
length
;
i
++
)
{
input_ptr
[
i
]
=
matrix
[
i
];
}
auto
output
=
shared_paddle_mobile_instance
->
Predict
(
input
);
count
=
output
->
numel
();
result
=
env
->
NewFloatArray
(
count
);
env
->
SetFloatArrayRegion
(
result
,
0
,
count
,
output
->
data
<
float
>
());
env
->
ReleaseByteArrayElements
(
yuv_
,
yuv
,
0
);
env
->
ReleaseIntArrayElements
(
ddims
,
ddim_ptr
,
0
);
env
->
ReleaseFloatArrayElements
(
meanValues
,
meansPointer
,
0
);
ANDROIDLOGI
(
"predictYuv finished"
);
return
result
;
return
result
;
}
}
...
...
src/jni/paddle_mobile_jni.h
浏览文件 @
6562c696
...
@@ -33,6 +33,19 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
...
@@ -33,6 +33,19 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
JNIEXPORT
jboolean
JNICALL
Java_com_baidu_paddle_PML_loadCombined
(
JNIEXPORT
jboolean
JNICALL
Java_com_baidu_paddle_PML_loadCombined
(
JNIEnv
*
env
,
jclass
thiz
,
jstring
modelPath
,
jstring
paramPath
);
JNIEnv
*
env
,
jclass
thiz
,
jstring
modelPath
,
jstring
paramPath
);
/**
* object detection for anroid
*/
JNIEXPORT
jfloatArray
JNICALL
Java_com_baidu_paddle_PML_predictImage
(
JNIEnv
*
env
,
jclass
thiz
,
jfloatArray
buf
,
jintArray
ddims
);
/**
* object detection for anroid
*/
JNIEXPORT
jfloatArray
JNICALL
Java_com_baidu_paddle_PML_predictYuv
(
JNIEnv
*
env
,
jclass
thiz
,
jbyteArray
yuv
,
jint
imgwidth
,
jint
imgHeight
,
jintArray
ddims
,
jfloatArray
meanValues
);
/**
/**
* object detection for anroid
* object detection for anroid
*/
*/
...
...
src/operators/math/pooling.cpp
浏览文件 @
6562c696
...
@@ -60,8 +60,8 @@ class PoolFunctor<CPU, PoolProcess, T> {
...
@@ -60,8 +60,8 @@ class PoolFunctor<CPU, PoolProcess, T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
#pragma omp parallel for
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录