Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
6478c30e
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6478c30e
编写于
7月 27, 2020
作者:
H
HappyAngel
提交者:
GitHub
7月 27, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#143
from PaddlePaddle/develop
pull code
上级
49851fe3
bfaa2c93
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
306 addition
and
167 deletion
+306
-167
lite/api/cxx_api.h
lite/api/cxx_api.h
+64
-17
lite/api/light_api.cc
lite/api/light_api.cc
+1
-0
lite/api/mobilenetv2_test.cc
lite/api/mobilenetv2_test.cc
+1
-1
lite/core/program.h
lite/core/program.h
+5
-11
lite/kernels/arm/fc_compute.cc
lite/kernels/arm/fc_compute.cc
+3
-5
lite/kernels/arm/fc_compute.h
lite/kernels/arm/fc_compute.h
+5
-4
lite/kernels/arm/transpose_compute.cc
lite/kernels/arm/transpose_compute.cc
+176
-102
lite/kernels/arm/transpose_compute.h
lite/kernels/arm/transpose_compute.h
+12
-6
lite/kernels/arm/transpose_compute_test.cc
lite/kernels/arm/transpose_compute_test.cc
+4
-2
lite/kernels/bm/subgraph_compute.cc
lite/kernels/bm/subgraph_compute.cc
+4
-1
lite/kernels/huawei_ascend_npu/subgraph_compute.cc
lite/kernels/huawei_ascend_npu/subgraph_compute.cc
+21
-12
lite/kernels/huawei_ascend_npu/subgraph_compute.h
lite/kernels/huawei_ascend_npu/subgraph_compute.h
+10
-6
未找到文件。
lite/api/cxx_api.h
浏览文件 @
6478c30e
...
...
@@ -49,18 +49,33 @@ class LITE_API Predictor {
program_desc_
=
std
::
make_shared
<
cpp
::
ProgramDesc
>
();
}
// Create a predictor with the weight variable scope set.
///////////////////////////////////////////////////////////////////
// Function: Predictor
// Usage: Constructor of Predictor. Create a predictor with the
// weight variable scope set given.
///////////////////////////////////////////////////////////////////
explicit
Predictor
(
const
std
::
shared_ptr
<
lite
::
Scope
>&
root_scope
)
:
scope_
(
root_scope
)
{}
///////////////////////////////////////////////////////////////////
// Function: Predictor
// Usage: Constructor of Predictor. This constructor function can
// only be called in Predictor->Clone. This Function will create
// a predictor from existed ProgramDesc, Scope and RuntimeProgram.
///////////////////////////////////////////////////////////////////
Predictor
(
const
std
::
shared_ptr
<
cpp
::
ProgramDesc
>&
program_desc
,
const
std
::
shared_ptr
<
Scope
>&
root
_scope
,
const
std
::
shared_ptr
<
Scope
>&
root
,
const
std
::
vector
<
Place
>&
valid_places
,
const
std
::
vector
<
std
::
string
>&
var
s_to_clone
=
{})
:
program_desc_
(
program_desc
),
scope_
(
root
_scope
)
{
Program
program
(
program_desc_
,
scope_
,
valid_places
,
vars_to_clone
);
optimizer_
=
Optimizer
(
std
::
move
(
program
),
valid_plac
es
);
exec_scope_
=
optimizer_
.
exec_scope
();
const
std
::
vector
<
std
::
string
>&
var
_names
=
{})
:
program_desc_
(
program_desc
),
scope_
(
root
)
{
// step1. Create a Program to construct the exec_scope and ops
Program
program
(
program_desc_
,
scope_
,
valid_places
,
var_nam
es
);
exec_scope_
=
program
.
exec_scope
();
valid_places_
=
valid_places
;
// step3. Create the RuntimeProgram.
program_
.
reset
(
new
RuntimeProgram
(
program_desc_
,
exec_scope_
,
kRootBlockIdx
));
program_generated_
=
true
;
}
// Build from a model, with places set for hardware config.
...
...
@@ -83,26 +98,58 @@ class LITE_API Predictor {
const
std
::
vector
<
Place
>&
valid_places
,
const
std
::
vector
<
std
::
string
>&
passes
=
{});
std
::
shared_ptr
<
Predictor
>
Clone
()
const
{
return
std
::
make_shared
<
Predictor
>
(
program_desc_
,
scope_
,
valid_places_
);
//////////////////////////////////////////////////////////
// Function: Clone
// Usage: Create a Predictor from an existed one,
// the cloned predictor will share persistable variables
// in scope_ with the original predictor.
//////////////////////////////////////////////////////////
std
::
shared_ptr
<
Predictor
>
Clone
()
{
// step 1. Generate runtime_program, update op_info and var_info in
// program_desc_
if
(
!
program_generated_
)
{
GenRuntimeProgram
();
}
program_
->
SaveToProgram
(
program_desc_
);
// step 2. Create a predictor friom current program_desc_ and
// runtime_program.
auto
predictor
=
std
::
make_shared
<
Predictor
>
(
program_desc_
,
scope_
,
valid_places_
);
// step3. Return the result
return
predictor
;
}
std
::
shared_ptr
<
Predictor
>
Clone
(
const
std
::
vector
<
std
::
string
>&
vars_to_clone
)
const
{
//////////////////////////////////////////////////////////
// Function: Clone(var_names)
// Usage: Create a Predictor from an existed one,
// the cloned predictor will share persistable variables
// but persistable variables of name var_names will not
// be shared.
//////////////////////////////////////////////////////////
std
::
shared_ptr
<
Predictor
>
Clone
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
CHECK
(
program_desc_
)
<<
"Both program and scope of current predicotr "
"should be not be nullptr in Clone mode."
;
CHECK
(
scope_
)
<<
"Both program and scope of current predicotr should be "
"not be nullptr in Clone mode."
;
// step 1. Generate runtime_program, update op_info and var_info in
// program_desc_
if
(
!
program_generated_
)
{
GenRuntimeProgram
();
}
program_
->
SaveToProgram
(
program_desc_
);
// step 2. Create a predictor friom current program_desc_ and
// runtime_program.
auto
predictor
=
std
::
make_shared
<
Predictor
>
(
program_desc_
,
scope_
,
valid_places_
,
var
s_to_clone
);
for
(
auto
var_name
:
var
s_to_clone
)
{
program_desc_
,
scope_
,
valid_places_
,
var
_names
);
// step3. Copy some persistable variables into private scope.
for
(
auto
var_name
:
var
_names
)
{
predictor
->
exec_scope_
->
LocalVar
(
var_name
);
auto
*
tensor
=
predictor
->
scope_
->
Var
(
var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
tensor
=
predictor
->
scope_
->
Var
(
var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
*
sub_tensor
=
predictor
->
exec_scope_
->
Var
(
var_name
)
->
GetMutable
<
Tensor
>
();
sub_tensor
->
CopyDataFrom
(
*
tensor
);
}
// step4. Return the result
return
predictor
;
}
...
...
@@ -161,7 +208,7 @@ class LITE_API Predictor {
std
::
shared_ptr
<
cpp
::
ProgramDesc
>
program_desc_
;
std
::
shared_ptr
<
Scope
>
scope_
;
Scope
*
exec_scope_
;
std
::
unique
_ptr
<
RuntimeProgram
>
program_
;
std
::
shared
_ptr
<
RuntimeProgram
>
program_
;
bool
program_generated_
{
false
};
std
::
vector
<
std
::
string
>
input_names_
;
std
::
vector
<
std
::
string
>
output_names_
;
...
...
lite/api/light_api.cc
浏览文件 @
6478c30e
...
...
@@ -33,6 +33,7 @@ void LightPredictor::Build(const std::string& lite_model_file,
DequantizeWeight
();
BuildRuntimeProgram
(
program_desc_
);
PrepareFeedFetch
();
program_desc_
.
reset
();
}
void
LightPredictor
::
Build
(
const
std
::
string
&
model_dir
,
...
...
lite/api/mobilenetv2_test.cc
浏览文件 @
6478c30e
...
...
@@ -97,7 +97,7 @@ void TestModel(const std::vector<Place>& valid_places,
if
(
first_target
==
TARGET
(
kOpenCL
)
||
first_target
==
TARGET
(
kNPU
))
{
ASSERT_EQ
(
out
->
dims
().
production
(),
1000
);
double
eps
=
first_target
==
TARGET
(
kOpenCL
)
?
0.
1
5
:
0.1
;
double
eps
=
first_target
==
TARGET
(
kOpenCL
)
?
0.
2
5
:
0.1
;
for
(
int
i
=
0
;
i
<
ref
.
size
();
++
i
)
{
for
(
int
j
=
0
;
j
<
ref
[
i
].
size
();
++
j
)
{
auto
result
=
pdata
[
j
*
step
+
(
out
->
dims
()[
1
]
*
i
)];
...
...
lite/core/program.h
浏览文件 @
6478c30e
...
...
@@ -47,21 +47,18 @@ struct Program {
Program
(
const
std
::
shared_ptr
<
cpp
::
ProgramDesc
>&
program_desc
,
const
std
::
shared_ptr
<
Scope
>&
root_scope
,
const
std
::
vector
<
Place
>&
valid_places
,
const
std
::
vector
<
std
::
string
>&
vars_to_clone
=
{})
:
scope_
(
root_scope
),
valid_places_
(
valid_places
),
program_desc_
(
program_desc
)
{
const
std
::
vector
<
std
::
string
>&
var_names
=
{})
:
scope_
(
root_scope
),
valid_places_
(
valid_places
)
{
CHECK
(
scope_
)
<<
"scope should be init first"
;
VLOG
(
4
)
<<
"prepare work"
;
PrepareWorkspace
(
program_desc
_
,
vars_to_clone
);
PrepareWorkspace
(
program_desc
,
var_names
);
VLOG
(
4
)
<<
"build desc"
;
Build
(
program_desc
_
);
Build
(
program_desc
);
VLOG
(
4
)
<<
"build desc finished"
;
}
std
::
unique_ptr
<
Program
>
Clone
()
const
{
return
std
::
unique_ptr
<
Program
>
(
new
Program
(
program_desc_
,
scope_
,
valid_places_
));
return
std
::
unique_ptr
<
Program
>
(
new
Program
(
scope_
));
}
const
std
::
list
<
std
::
string
>&
weights
()
const
{
return
weights_
;
}
...
...
@@ -83,8 +80,6 @@ struct Program {
Scope
*
exec_scope
()
{
return
exec_scope_
;
}
Scope
*
scope
()
{
return
scope_
.
get
();
}
cpp
::
ProgramDesc
*
program_desc
()
{
return
program_desc_
.
get
();
}
const
std
::
map
<
std
::
string
,
const
Type
*>&
var_type_map
()
const
{
return
var_type_map_
;
}
...
...
@@ -106,7 +101,6 @@ struct Program {
std
::
vector
<
Place
>
valid_places_
;
// Runtime scope.
Scope
*
exec_scope_
{};
std
::
shared_ptr
<
cpp
::
ProgramDesc
>
program_desc_
;
};
struct
Instruction
{
...
...
lite/kernels/arm/fc_compute.cc
浏览文件 @
6478c30e
...
...
@@ -88,7 +88,7 @@ void FcCompute<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
auto
i_data
=
param
.
input
->
data
<
float
>
();
auto
o_data
=
param
.
output
->
mutable_data
<
float
>
();
auto
w_data
=
flag_gemm_
?
param
.
w
->
data
<
float
>
()
:
weights_
.
data
<
float
>
();
auto
w_data
=
param
.
w
->
data
<
float
>
();
const
float
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
if
(
flag_trans_bias_
)
{
b_data
=
bias_
.
data
<
float
>
();
...
...
@@ -149,8 +149,7 @@ void FcCompute<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
auto
i_data
=
param
.
input
->
data
<
int8_t
>
();
auto
o_data
=
param
.
output
->
mutable_data
<
float
>
();
auto
w_data
=
flag_trans_weights_
?
weights_
.
data
<
int8_t
>
()
:
param
.
w
->
data
<
int8_t
>
();
auto
w_data
=
param
.
w
->
data
<
int8_t
>
();
const
float
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
if
(
flag_trans_bias_
)
{
b_data
=
bias_
.
data
<
float
>
();
...
...
@@ -208,8 +207,7 @@ void FcCompute<PRECISION(kInt8), PRECISION(kInt8)>::Run() {
auto
i_data
=
param
.
input
->
data
<
int8_t
>
();
auto
o_data
=
param
.
output
->
mutable_data
<
int8_t
>
();
auto
w_data
=
flag_trans_weights_
?
weights_
.
data
<
int8_t
>
()
:
param
.
w
->
data
<
int8_t
>
();
auto
w_data
=
param
.
w
->
data
<
int8_t
>
();
const
float
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
if
(
flag_trans_bias_
)
{
b_data
=
bias_
.
data
<
float
>
();
...
...
lite/kernels/arm/fc_compute.h
浏览文件 @
6478c30e
...
...
@@ -104,9 +104,11 @@ class FcCompute : public KernelLite<TARGET(kARM), PType> {
CHECK_EQ
(
k_
,
static_cast
<
int
>
(
w_dims
[
0
]));
flag_gemm_
=
check_fc_use_gemm
<
PType
,
OutType
>
(
m_
,
param
.
weight_scale
,
param
.
bias
!=
nullptr
);
if
(
!
flag_trans_weights_
&&
!
flag_gemm_
)
{
flag_trans_weights_
=
true
;
fc_trans_weights
<
PType
>
(
*
param
.
w
,
&
weights_
);
if
(
flag_trans_weights_
==
flag_gemm_
)
{
flag_trans_weights_
=
!
flag_trans_weights_
;
Tensor
tmp_tensor
;
fc_trans_weights
<
PType
>
(
*
param
.
w
,
&
tmp_tensor
);
param
.
w
->
CopyDataFrom
(
tmp_tensor
);
}
}
...
...
@@ -117,7 +119,6 @@ class FcCompute : public KernelLite<TARGET(kARM), PType> {
private:
DDim
last_shape_
;
Tensor
weights_
;
Tensor
bias_
;
bool
flag_trans_weights_
{
false
};
bool
flag_trans_bias_
{
false
};
...
...
lite/kernels/arm/transpose_compute.cc
浏览文件 @
6478c30e
...
...
@@ -25,135 +25,209 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
bool
IsShuffleChannel
(
const
std
::
vector
<
int
>
&
axis
)
{
bool
is_shuffle_channel
=
true
;
if
(
axis
.
size
()
>
2
&&
axis
[
0
]
==
0
&&
axis
[
1
]
==
2
&&
axis
[
2
]
==
1
)
{
for
(
int
i
=
3
;
i
<
axis
.
size
();
++
i
)
{
if
(
axis
[
i
]
!=
i
)
{
is_shuffle_channel
=
false
;
break
;
}
template
<
typename
Dtype
>
void
trans_basic
(
const
int
count
,
const
Dtype
*
din
,
const
int
*
permute_order
,
const
int
*
old_steps
,
const
int
*
new_steps
,
const
int
num_axes
,
Dtype
*
dout
)
{
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
int
old_idx
=
0
;
int
idx
=
i
;
for
(
int
j
=
0
;
j
<
num_axes
;
++
j
)
{
int
order
=
permute_order
[
j
];
old_idx
+=
(
idx
/
new_steps
[
j
])
*
old_steps
[
order
];
idx
%=
new_steps
[
j
];
}
}
else
{
return
false
;
dout
[
i
]
=
din
[
old_idx
];
}
return
is_shuffle_channel
;
}
template
<
typename
Dtype
>
void
ShuffleChannelCompute
(
const
std
::
vector
<
int
>
&
axis
,
const
lite
::
Tensor
*
input
,
lite
::
Tensor
*
output
)
{
const
Dtype
*
input_ptr
=
input
->
data
<
Dtype
>
();
Dtype
*
output_ptr
=
output
->
mutable_data
<
Dtype
>
();
// input and output's shape dimension must >= 2 && <= 6.
const
DDim
&
in_dim
=
input
->
dims
();
const
DDim
&
out_dim
=
output
->
dims
();
size_t
offset
=
1
;
for
(
int
i
=
3
;
i
<
axis
.
size
();
++
i
)
{
offset
*=
in_dim
[
i
];
}
void
transpose_mat
(
const
Dtype
*
din
,
Dtype
*
dout
,
const
int
num
,
const
int
width
,
const
int
height
);
void
transpose_mat
(
const
float
*
din
,
float
*
dout
,
const
int
num
,
const
int
width
,
const
int
height
)
{
int
nw
=
width
>>
2
;
int
nh
=
height
>>
2
;
int
size_in
=
width
*
height
;
#pragma omp parallel for collapse(3)
for
(
int
batch
=
0
;
batch
<
out_dim
[
0
];
++
batch
)
{
for
(
int
c1
=
0
;
c1
<
out_dim
[
1
];
++
c1
)
{
for
(
int
c2
=
0
;
c2
<
out_dim
[
2
];
++
c2
)
{
size_t
out_offset
=
((
batch
*
out_dim
[
1
]
+
c1
)
*
out_dim
[
2
]
+
c2
)
*
offset
;
size_t
in_offset
=
((
batch
*
in_dim
[
1
]
+
c2
)
*
in_dim
[
2
]
+
c1
)
*
offset
;
memcpy
(
output_ptr
+
out_offset
,
input_ptr
+
in_offset
,
offset
*
sizeof
(
Dtype
));
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
float
*
ptr_out
=
dout
+
i
*
size_in
;
const
float
*
ptr_in
=
din
+
i
*
size_in
;
#pragma omp parallel for
for
(
int
h
=
0
;
h
<
nh
;
h
++
)
{
const
float
*
ptr_din_row
=
ptr_in
+
h
*
4
*
width
;
for
(
int
w
=
0
;
w
<
nw
;
w
++
)
{
float
*
data_out_ptr
=
ptr_out
+
w
*
4
*
height
+
h
*
4
;
const
float
*
din0
=
ptr_din_row
;
const
float
*
din1
=
din0
+
width
;
const
float
*
din2
=
din1
+
width
;
const
float
*
din3
=
din2
+
width
;
float
*
dout0
=
data_out_ptr
;
float
*
dout1
=
dout0
+
height
;
float
*
dout2
=
dout1
+
height
;
float
*
dout3
=
dout2
+
height
;
#ifdef __aarch64__
float32x4_t
vr0
=
vld1q_f32
(
din0
);
float32x4_t
vr1
=
vld1q_f32
(
din1
);
float32x4_t
vr2
=
vld1q_f32
(
din2
);
float32x4_t
vr3
=
vld1q_f32
(
din3
);
float32x4_t
re0
=
vtrn1q_f32
(
vr0
,
vr1
);
float32x4_t
re1
=
vtrn2q_f32
(
vr0
,
vr1
);
float32x4_t
re2
=
vtrn1q_f32
(
vr2
,
vr3
);
float32x4_t
re3
=
vtrn2q_f32
(
vr2
,
vr3
);
vst1_f32
(
dout0
,
vget_low_f32
(
re0
));
dout0
+=
2
;
vst1_f32
(
dout0
,
vget_low_f32
(
re2
));
vst1_f32
(
dout1
,
vget_low_f32
(
re1
));
dout1
+=
2
;
vst1_f32
(
dout1
,
vget_low_f32
(
re3
));
vst1_f32
(
dout2
,
vget_high_f32
(
re0
));
dout2
+=
2
;
vst1_f32
(
dout2
,
vget_high_f32
(
re2
));
vst1_f32
(
dout3
,
vget_high_f32
(
re1
));
dout3
+=
2
;
vst1_f32
(
dout3
,
vget_high_f32
(
re3
));
#else
asm
(
"vld1.32 {d0, d1}, [%[in0]]
\n
"
"vld1.32 {d2, d3}, [%[in1]]
\n
"
"vld1.32 {d4, d5}, [%[in2]]
\n
"
"vld1.32 {d6, d7}, [%[in3]]
\n
"
"vtrn.32 q0, q1
\n
"
"vtrn.32 q2, q3
\n
"
"vswp d1, d4
\n
"
"vswp d3, d6
\n
"
"vst1.32 {d0, d1}, [%[out0]]
\n
"
"vst1.32 {d2, d3}, [%[out1]]
\n
"
"vst1.32 {d4, d5}, [%[out2]]
\n
"
"vst1.32 {d6, d7}, [%[out3]]
\n
"
:
:
[
out0
]
"r"
(
dout0
),
[
out1
]
"r"
(
dout1
),
[
out2
]
"r"
(
dout2
),
[
out3
]
"r"
(
dout3
),
[
in0
]
"r"
(
din0
),
[
in1
]
"r"
(
din1
),
[
in2
]
"r"
(
din2
),
[
in3
]
"r"
(
din3
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
);
#endif
ptr_din_row
+=
4
;
}
}
// remian
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
nw
*
4
;
w
<
width
;
w
++
)
{
const
float
*
data_in_ptr
=
ptr_in
+
h
*
width
+
w
;
float
*
data_out_ptr
=
ptr_out
+
w
*
height
+
h
;
*
data_out_ptr
=
*
data_in_ptr
;
}
}
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
h
=
nh
*
4
;
h
<
height
;
h
++
)
{
const
float
*
data_in_ptr
=
ptr_in
+
h
*
width
+
w
;
float
*
data_out_ptr
=
ptr_out
+
w
*
height
+
h
;
*
data_out_ptr
=
*
data_in_ptr
;
}
}
}
}
template
<
typename
Dtype
>
void
TransposeCompute_
(
const
std
::
vector
<
int
>
&
axis
,
const
lite
::
Tensor
*
input
,
lite
::
Tensor
*
output
)
{
// const Dtype *input_ptr = input->data<Dtype>();
const
Dtype
*
input_ptr
=
input
->
data
<
float
>
();
Dtype
*
output_ptr
=
output
->
mutable_data
<
Dtype
>
();
// input and output's shape dimension must >= 2 && <= 6.
const
DDim
&
in_dim
=
input
->
dims
();
const
DDim
&
out_dim
=
output
->
dims
();
// precompute inverted output dim and strides
size_t
rout_dim
[
6
],
strides
[
6
];
int
permute
=
axis
.
size
();
// permute must >=2 && <= 6.
for
(
int
i
=
0
;
i
<
permute
;
++
i
)
{
int
k
=
permute
-
1
-
i
;
strides
[
k
]
=
1
;
for
(
int
j
=
axis
[
i
]
+
1
;
j
<
permute
;
++
j
)
{
strides
[
k
]
*=
in_dim
[
j
];
std
::
vector
<
int
>
get_stride
(
const
paddle
::
lite
::
DDimLite
&
dims
)
{
std
::
vector
<
int
>
data_stride
{
0
};
for
(
int
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
data_stride
.
push_back
(
dims
.
count
(
i
,
dims
.
size
()));
}
return
data_stride
;
}
void
TransposeCompute
::
PrepareForRun
()
{
auto
&
param
=
Param
<
operators
::
TransposeParam
>
();
auto
*
input
=
param
.
x
;
auto
*
output
=
param
.
output
;
int
_num_axes
=
input
->
dims
().
size
();
CHECK
(
_num_axes
==
param
.
axis
.
size
())
<<
"axis size is not match to input dims"
;
need_trans
=
false
;
for
(
int
i
=
0
;
i
<
_num_axes
;
++
i
)
{
if
(
param
.
axis
[
i
]
!=
i
)
{
need_trans
=
true
;
break
;
}
rout_dim
[
k
]
=
out_dim
[
i
];
}
// unroll the first 2 dimensions
int
reamin_dim
=
1
;
for
(
int
i
=
2
;
i
<
out_dim
.
size
();
++
i
)
{
reamin_dim
*=
out_dim
[
i
];
if
(
!
need_trans
)
{
return
;
}
#pragma omp parallel for collapse(2)
for
(
int
batch
=
0
;
batch
<
out_dim
[
0
];
++
batch
)
{
for
(
int
j
=
0
;
j
<
out_dim
[
1
];
++
j
)
{
size_t
offset
=
batch
*
strides
[
permute
-
1
]
+
j
*
strides
[
permute
-
2
];
Dtype
*
out_ptr
=
output_ptr
+
(
batch
*
out_dim
[
1
]
+
j
)
*
reamin_dim
;
int
indics
[
4
]
=
{
0
,
0
,
0
,
0
};
for
(
int
k
=
0
;
k
<
reamin_dim
;
++
k
)
{
out_ptr
[
k
]
=
input_ptr
[
offset
];
indics
[
0
]
+=
1
;
offset
+=
strides
[
0
];
for
(
int
p
=
0
;
p
<
permute
-
3
;
++
p
)
{
if
(
indics
[
p
]
==
rout_dim
[
p
])
{
indics
[
p
+
1
]
+=
1
;
indics
[
p
]
=
0
;
offset
+=
strides
[
p
+
1
];
offset
-=
rout_dim
[
p
]
*
strides
[
p
];
}
else
{
break
;
}
}
}
std
::
vector
<
int
>
axis_diff
;
int
j
=
0
;
for
(
int
i
=
0
;
i
<
_num_axes
;
++
i
)
{
if
(
param
.
axis
[
j
]
!=
i
)
{
axis_diff
.
push_back
(
j
);
}
else
{
j
++
;
}
}
}
for
(
int
i
=
0
;
i
<
axis_diff
.
size
();
i
++
)
{
}
if
(
input
->
dims
().
count
(
axis_diff
[
0
],
_num_axes
)
==
1
)
{
need_trans
=
false
;
return
;
}
// Transpose
void
TransposeCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
TransposeParam
>
();
auto
*
input
=
param
.
x
;
auto
*
output
=
param
.
output
;
const
std
::
vector
<
int
>
axis
=
param
.
axis
;
if
(
axis_diff
.
size
()
==
1
)
{
trans_mat
=
true
;
_trans_num
=
input
->
dims
().
count
(
0
,
std
::
max
(
axis_diff
[
0
],
0
));
_trans_w
=
input
->
dims
().
count
(
axis_diff
[
0
]
+
1
,
_num_axes
);
_trans_h
=
input
->
dims
()[
axis_diff
[
0
]];
bool
shuffle_channel
=
IsShuffleChannel
(
axis
);
if
(
shuffle_channel
)
{
ShuffleChannelCompute
<
float
>
(
axis
,
input
,
output
);
}
else
{
TransposeCompute_
<
float
>
(
axis
,
input
,
output
);
trans_mat
=
false
;
_new_steps
=
get_stride
(
output
->
dims
());
_old_steps
=
get_stride
(
input
->
dims
());
}
return
;
}
// Transpose2
void
Transpose2Compute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
TransposeParam
>
();
auto
*
input
=
param
.
x
;
auto
*
output
=
param
.
output
;
// Transpose
void
TransposeCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
TransposeParam
>
();
auto
*
input
=
param
.
x
;
auto
*
output
=
param
.
output
;
const
std
::
vector
<
int
>
axis
=
param
.
axis
;
bool
shuffle_channel
=
IsShuffleChannel
(
axis
);
if
(
shuffle_channel
)
{
ShuffleChannelCompute
<
float
>
(
axis
,
input
,
output
);
//! only copy the data
if
(
!
need_trans
)
{
output
->
CopyDataFrom
(
*
input
);
return
;
}
const
float
*
din
=
static_cast
<
const
float
*>
(
input
->
data
<
float
>
());
float
*
dout
=
static_cast
<
float
*>
(
output
->
mutable_data
<
float
>
());
//! transpose the data
if
(
trans_mat
)
{
transpose_mat
(
din
,
dout
,
_trans_num
,
_trans_w
,
_trans_h
);
}
else
{
TransposeCompute_
<
float
>
(
axis
,
input
,
output
);
trans_basic
(
output
->
numel
(),
din
,
param
.
axis
.
data
(),
_old_steps
.
data
(),
_new_steps
.
data
(),
input
->
dims
().
size
(),
dout
);
}
return
;
}
}
// namespace arm
...
...
lite/kernels/arm/transpose_compute.h
浏览文件 @
6478c30e
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <algorithm>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/operators/transpose_op.h"
...
...
@@ -26,19 +27,24 @@ namespace arm {
class
TransposeCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
TransposeParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
virtual
~
TransposeCompute
()
=
default
;
private:
bool
need_trans
=
false
;
bool
trans_mat
=
false
;
int
_trans_num
;
int
_trans_w
;
int
_trans_h
;
std
::
vector
<
int
>
_new_steps
;
std
::
vector
<
int
>
_old_steps
;
};
// Transpose2
class
Transpose2Compute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
class
Transpose2Compute
:
public
TransposeCompute
{
public:
using
param_t
=
operators
::
TransposeParam
;
void
Run
()
override
;
virtual
~
Transpose2Compute
()
=
default
;
};
...
...
lite/kernels/arm/transpose_compute_test.cc
浏览文件 @
6478c30e
...
...
@@ -107,6 +107,7 @@ TEST(transpose_arm, compute_shape_nchw) {
// run transpose_compute
transpose
.
SetParam
(
param
);
transpose
.
PrepareForRun
();
transpose
.
Run
();
// run transpose_compute_ref
...
...
@@ -173,6 +174,7 @@ TEST(transpose2_arm, compute_shape_nchw) {
// run transpose_compute
transpose2
.
SetParam
(
param
);
transpose2
.
PrepareForRun
();
transpose2
.
Run
();
// run transpose_compute_ref
...
...
@@ -183,8 +185,8 @@ TEST(transpose2_arm, compute_shape_nchw) {
auto
*
output_ref_data
=
output_ref
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_shape
[
0
]
*
input_shape
[
1
]
*
input_shape
[
2
]
*
input_shape
[
3
];
i
+=
4
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
i
+=
1
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
0
);
}
}
...
...
lite/kernels/bm/subgraph_compute.cc
浏览文件 @
6478c30e
...
...
@@ -34,6 +34,9 @@ bool SubgraphEngine::BuildDeviceProgram() {
const
auto
&
bridges
=
subgraph
::
Registry
::
Instance
();
graph
.
CreateCompilerHandle
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
BMContext
>();
for
(
size_t
i
=
0
;
i
<
input_names_
.
size
();
i
++
)
{
graph
.
AddNode
(
input_names_
[
i
]);
}
if
(
!
origin_program_
)
{
BuildOriginProgram
();
}
...
...
@@ -60,7 +63,7 @@ bool SubgraphEngine::BuildDeviceProgram() {
std
::
string
net_name
=
"bmnet_f32bmodel"
;
auto
unique_net_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
net_name
);
__bmcompile_opt
(
graph
.
GetCompilerHandle
(),
const_cast
<
char
*>
(
unique_net_name
.
c_str
()),
2
);
graph
.
GetCompilerHandle
(),
const_cast
<
char
*>
(
unique_net_name
.
c_str
()),
1
);
void
*
bmodel_data
=
nullptr
;
unsigned
int
data_size
=
0
;
bm_hd_
=
static_cast
<
bm_handle_t
>
(
ctx
.
GetHandle
());
...
...
lite/kernels/huawei_ascend_npu/subgraph_compute.cc
浏览文件 @
6478c30e
...
...
@@ -104,7 +104,7 @@ bool DeviceProgram::LoadFromCacheFile(
}
bool
DeviceProgram
::
BuildGraphAndCacheToFile
(
const
std
::
vector
<
Instruction
>&
origin_program
,
RuntimeProgram
*
origin_program
,
const
std
::
vector
<
std
::
string
>&
input_names
,
const
std
::
vector
<
std
::
string
>&
output_names
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
origin_idims
,
...
...
@@ -118,10 +118,14 @@ bool DeviceProgram::BuildGraphAndCacheToFile(
// Convert all of ops and their input vars and weights to HiAI IR nodes,
// then added them into the IR graph
int
status
=
0
;
CHECK
(
!
origin_program
.
empty
())
<<
"no instructions"
;
subgraph
::
huawei_ascend_npu
::
Graph
graph
;
const
auto
&
bridges
=
subgraph
::
Registry
::
Instance
();
for
(
auto
&
inst
:
origin_program
)
{
CHECK
(
origin_program
)
<<
"[HUAWEI_ASCEND_NPU] The origin program is not initialized!"
;
CHECK_GT
(
origin_program
->
instructions
(
kRootBlockIdx
).
size
(),
0
)
<<
"[HUAWEI_ASCEND_NPU] No instructions found in the origin program!"
;
const
auto
&
insts
=
origin_program
->
instructions
(
kRootBlockIdx
);
for
(
auto
&
inst
:
insts
)
{
auto
op
=
const_cast
<
OpLite
*>
(
inst
.
op
());
CHECK
(
op
);
op
->
CheckShape
();
...
...
@@ -140,7 +144,8 @@ bool DeviceProgram::BuildGraphAndCacheToFile(
// Collect the input and output nodes of the IR graph
std
::
vector
<
ge
::
Operator
>
device_inodes
;
for
(
size_t
i
=
0
;
i
<
input_names
.
size
();
i
++
)
{
CHECK
(
graph
.
Has
(
input_names
[
i
])
&&
graph
.
Get
(
input_names
[
i
])
->
is_data
());
CHECK
(
graph
.
Has
(
input_names
[
i
]));
CHECK
(
graph
.
Get
(
input_names
[
i
])
->
is_data
());
device_inodes
.
push_back
(
*
graph
.
Get
(
input_names
[
i
])
->
data
());
}
std
::
vector
<
ge
::
Operator
>
device_onodes
;
...
...
@@ -379,7 +384,8 @@ bool SubgraphEngine::BuildDeviceProgram() {
ctx_
->
As
<
HuaweiAscendNPUContext
>
().
SubgraphModelCacheDir
();
auto
device_id
=
ctx_
->
As
<
HuaweiAscendNPUContext
>
().
HuaweiAscendDeviceID
();
VLOG
(
3
)
<<
"[HUAWEI_ASCEND_NPU] Get model cached dir: "
<<
model_cache_dir
;
VLOG
(
3
)
<<
"[HUAWEI_ASCEND_NPU] Get huawei ascend npu device id: "
<<
device_id
;
// Check and load if the cached model and configuration file exists
if
(
model_cache_dir
.
empty
()
||
!
device_program
->
LoadFromCacheFile
(
input_names_
,
...
...
@@ -390,11 +396,14 @@ bool SubgraphEngine::BuildDeviceProgram() {
// Build the model online, including converting the paddle ops to the HiAI
// IR nodes, building the HiAI IR graph to the om model, then load it as a
// new HiAI model manager client for inference.
if
(
origin_program_
.
empty
()
)
{
if
(
!
origin_program_
)
{
BuildOriginProgram
();
}
CHECK
(
!
origin_program_
.
empty
())
<<
"no instructions"
;
if
(
!
device_program
->
BuildGraphAndCacheToFile
(
origin_program_
,
CHECK
(
origin_program_
)
<<
"[HUAWEI_ASCEND_NPU] The origin program is not initialized!"
;
CHECK_GT
(
origin_program_
->
instructions
().
size
(),
0
)
<<
"[HUAWEI_ASCEND_NPU] No instructions found in the origin program!"
;
if
(
!
device_program
->
BuildGraphAndCacheToFile
(
origin_program_
.
get
(),
input_names_
,
output_names_
,
origin_idims_
,
...
...
@@ -443,11 +452,11 @@ bool SubgraphEngine::LaunchDeviceProgram() {
void
SubgraphCompute
::
PrepareForRun
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
engine_
.
reset
(
new
SubgraphEngine
(
ctx_
.
get
(),
param
.
sub_block_idx
,
param
.
sub_block_desc
,
param
.
block_idx
,
param
.
program_desc
,
param
.
exec_scope
,
param
.
input_data_names
,
param
.
output_data_names
,
param
.
scope
));
param
.
output_data_names
));
CHECK
(
engine_
);
}
...
...
lite/kernels/huawei_ascend_npu/subgraph_compute.h
浏览文件 @
6478c30e
...
...
@@ -46,7 +46,7 @@ class DeviceProgram {
const
std
::
string
&
model_cache_dir
,
const
int
device_id
);
bool
BuildGraphAndCacheToFile
(
const
std
::
vector
<
Instruction
>&
origin_program
,
RuntimeProgram
*
origin_program
,
const
std
::
vector
<
std
::
string
>&
input_names
,
const
std
::
vector
<
std
::
string
>&
output_names
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
origin_idims
,
...
...
@@ -80,12 +80,16 @@ class SubgraphEngine : public subgraph::Engine {
public:
SubgraphEngine
(
KernelContext
*
ctx
,
int
block_idx
,
cpp
::
BlockDesc
*
block_desc
,
const
std
::
shared_ptr
<
const
cpp
::
ProgramDesc
>&
program_desc
,
Scope
*
exec_scope
,
const
std
::
vector
<
std
::
string
>&
input_names
,
const
std
::
vector
<
std
::
string
>&
output_names
,
Scope
*
scope
)
:
subgraph
::
Engine
(
ctx
,
block_idx
,
block_desc
,
input_names
,
output_names
,
scope
)
{}
const
std
::
vector
<
std
::
string
>&
output_names
)
:
subgraph
::
Engine
(
ctx
,
block_idx
,
program_desc
,
exec_scope
,
input_names
,
output_names
)
{}
protected:
bool
PrepareWorkspaceForDeviceProgram
()
override
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录