Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
5f1070ea
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5f1070ea
编写于
9月 29, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
load memory for CLImage in GPU_CL mode
上级
8a088d13
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
186 addition
and
52 deletion
+186
-52
src/framework/executor.cpp
src/framework/executor.cpp
+186
-52
未找到文件。
src/framework/executor.cpp
浏览文件 @
5f1070ea
...
@@ -60,13 +60,13 @@ char *Get_binary_data(std::string filename) {
...
@@ -60,13 +60,13 @@ char *Get_binary_data(std::string filename) {
#pragma mark - executor
#pragma mark - executor
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
Executor
<
Dtype
,
P
>::
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
,
Executor
<
Dtype
,
P
>::
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
,
bool
use_optimize
,
bool
loddable
)
bool
use_optimize
,
bool
loddable
)
:
program_
(
p
),
:
program_
(
p
),
batch_size_
(
batch_size
),
batch_size_
(
batch_size
),
use_optimize_
(
use_optimize
),
use_optimize_
(
use_optimize
),
loddable_
(
loddable
)
{
loddable_
(
loddable
)
{
if
(
use_optimize_
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
}
else
{
...
@@ -77,7 +77,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
...
@@ -77,7 +77,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
PADDLE_MOBILE_ENFORCE
(
to_predict_program_
!=
nullptr
,
PADDLE_MOBILE_ENFORCE
(
to_predict_program_
!=
nullptr
,
"to_predict_program_ == NULL!"
);
"to_predict_program_ == NULL!"
);
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
BlockDesc
>>
blocks
=
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
to_predict_program_
->
Blocks
();
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#ifdef PADDLE_EXECUTOR_MULTITHREAD
depManager
.
resize
(
blocks
.
size
());
depManager
.
resize
(
blocks
.
size
());
#endif
#endif
...
@@ -89,8 +89,8 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
...
@@ -89,8 +89,8 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
DLOG
<<
"create op: "
<<
j
<<
" "
<<
op
->
Type
();
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
program_
.
scope
);
// use pre_infershape to pre resize , but if u use an lod mode tensor u
// use pre_infershape to pre resize , but if u use an lod mode tensor u
// need to resize in runtime
// need to resize in runtime
if
(
!
loddable_
)
{
if
(
!
loddable_
)
{
...
@@ -109,7 +109,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
...
@@ -109,7 +109,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
InitMemory
();
InitMemory
();
}
}
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
int
i
=
0
;
int
i
=
0
;
for
(
const
auto
&
op
:
ops
)
{
for
(
const
auto
&
op
:
ops
)
{
...
@@ -118,7 +118,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
...
@@ -118,7 +118,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
}
}
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
LoadMemory
(
const
framework
::
VarDesc
var_desc
,
void
Executor
<
Dtype
,
P
>::
LoadMemory
(
const
framework
::
VarDesc
var_desc
,
framework
::
LoDTensor
*
tensor
,
char
**
data
)
{
framework
::
LoDTensor
*
tensor
,
char
**
data
)
{
// 1. version
// 1. version
...
@@ -226,7 +226,7 @@ void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
...
@@ -226,7 +226,7 @@ void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
}
}
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
InitMemory
()
{
void
Executor
<
Dtype
,
P
>::
InitMemory
()
{
for
(
const
auto
&
block
:
to_predict_program_
->
Blocks
())
{
for
(
const
auto
&
block
:
to_predict_program_
->
Blocks
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
...
@@ -238,7 +238,7 @@ void Executor<Dtype, P>::InitMemory() {
...
@@ -238,7 +238,7 @@ void Executor<Dtype, P>::InitMemory() {
}
}
char
*
origin_data
=
char
*
origin_data
=
Get_binary_data
(
program_
.
model_path
+
"/"
+
var_desc
->
Name
());
Get_binary_data
(
program_
.
model_path
+
"/"
+
var_desc
->
Name
());
char
*
data
=
origin_data
;
char
*
data
=
origin_data
;
LoadMemory
(
*
var_desc
,
tensor
,
&
data
);
LoadMemory
(
*
var_desc
,
tensor
,
&
data
);
...
@@ -251,21 +251,21 @@ void Executor<Dtype, P>::InitMemory() {
...
@@ -251,21 +251,21 @@ void Executor<Dtype, P>::InitMemory() {
is_mute_match
=
varInputMemory
(
var_desc
,
var
,
tensor
);
is_mute_match
=
varInputMemory
(
var_desc
,
var
,
tensor
);
PADDLE_MOBILE_ENFORCE
(
PADDLE_MOBILE_ENFORCE
(
is_mute_match
,
is_mute_match
,
"got unhandled var_desc->Tensor_desc().DataType(): %d"
,
"got unhandled var_desc->Tensor_desc().DataType(): %d"
,
var_desc
->
Tensor_desc
().
DataType
());
var_desc
->
Tensor_desc
().
DataType
());
}
}
}
}
}
}
}
}
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
InitCombineMemory
()
{
void
Executor
<
Dtype
,
P
>::
InitCombineMemory
()
{
char
*
origin_data
;
char
*
origin_data
;
if
(
program_
.
combined_params_buf
&&
program_
.
combined_params_len
)
{
if
(
program_
.
combined_params_buf
&&
program_
.
combined_params_len
)
{
LOG
(
kLOG_INFO
)
<<
"use outter memory"
;
LOG
(
kLOG_INFO
)
<<
"use outter memory"
;
origin_data
=
(
char
*
)
program_
.
combined_params_buf
;
origin_data
=
(
char
*
)
program_
.
combined_params_buf
;
}
else
{
}
else
{
LOG
(
kLOG_INFO
)
<<
" begin init combine memory"
;
LOG
(
kLOG_INFO
)
<<
" begin init combine memory"
;
origin_data
=
Get_binary_data
(
program_
.
para_path
);
origin_data
=
Get_binary_data
(
program_
.
para_path
);
...
@@ -289,9 +289,9 @@ void Executor<Dtype, P>::InitCombineMemory() {
...
@@ -289,9 +289,9 @@ void Executor<Dtype, P>::InitCombineMemory() {
is_mute_match
=
varInputMemory
(
var_desc
,
var
,
tensor
);
is_mute_match
=
varInputMemory
(
var_desc
,
var
,
tensor
);
PADDLE_MOBILE_ENFORCE
(
PADDLE_MOBILE_ENFORCE
(
is_mute_match
,
is_mute_match
,
"got unhandled var_desc->Tensor_desc().DataType(): %d"
,
"got unhandled var_desc->Tensor_desc().DataType(): %d"
,
var_desc
->
Tensor_desc
().
DataType
());
var_desc
->
Tensor_desc
().
DataType
());
}
}
}
}
}
}
...
@@ -300,10 +300,10 @@ void Executor<Dtype, P>::InitCombineMemory() {
...
@@ -300,10 +300,10 @@ void Executor<Dtype, P>::InitCombineMemory() {
LOG
(
kLOG_INFO
)
<<
" end init combine memory "
;
LOG
(
kLOG_INFO
)
<<
" end init combine memory "
;
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
bool
Executor
<
Dtype
,
P
>::
varInputMemory
(
bool
Executor
<
Dtype
,
P
>::
varInputMemory
(
const
std
::
shared_ptr
<
framework
::
VarDesc
>
&
var_desc
,
Variable
*
var
,
const
std
::
shared_ptr
<
framework
::
VarDesc
>
&
var_desc
,
Variable
*
var
,
framework
::
LoDTensor
*
tensor
)
const
{
framework
::
LoDTensor
*
tensor
)
const
{
bool
is_mute_match
=
false
;
bool
is_mute_match
=
false
;
switch
(
var_desc
->
Tensor_desc
().
DataType
())
{
switch
(
var_desc
->
Tensor_desc
().
DataType
())
{
case
framework
::
VARTYPE_TYPE_FP16
:
{
case
framework
::
VARTYPE_TYPE_FP16
:
{
...
@@ -338,24 +338,22 @@ bool Executor<Dtype, P>::varInputMemory(
...
@@ -338,24 +338,22 @@ bool Executor<Dtype, P>::varInputMemory(
break
;
break
;
}
}
default:
{
default:
{
break
;
}
break
;
}
}
}
return
is_mute_match
;
return
is_mute_match
;
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
std
::
shared_ptr
<
framework
::
Tensor
>
Executor
<
Dtype
,
P
>::
Predict
(
std
::
shared_ptr
<
framework
::
Tensor
>
Executor
<
Dtype
,
P
>::
Predict
(
const
framework
::
Tensor
&
t
)
{
const
framework
::
Tensor
&
t
)
{
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"feed"
);
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"feed"
);
framework
::
Tensor
*
feed_tensor
=
framework
::
Tensor
*
feed_tensor
=
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
ShareDataWith
(
t
);
feed_tensor
->
ShareDataWith
(
t
);
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
...
@@ -435,8 +433,8 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
...
@@ -435,8 +433,8 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
PADDLE_MOBILE_ENFORCE
(
out_keys
.
size
()
>
0
,
"the last op contains no output"
);
PADDLE_MOBILE_ENFORCE
(
out_keys
.
size
()
>
0
,
"the last op contains no output"
);
framework
::
LoDTensor
*
output_tensor
=
framework
::
LoDTensor
*
output_tensor
=
framework
::
GetVarValue
<
framework
::
LoDTensor
>
(
out_keys
[
0
],
output_map
,
framework
::
GetVarValue
<
framework
::
LoDTensor
>
(
out_keys
[
0
],
output_map
,
*
(
program_
.
scope
));
*
(
program_
.
scope
));
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#ifdef PADDLE_EXECUTOR_MULTITHREAD
// TODO(haipeng): expose profile info as an interface, user can get them to
// TODO(haipeng): expose profile info as an interface, user can get them to
...
@@ -488,18 +486,18 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
...
@@ -488,18 +486,18 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
return
std
::
make_shared
<
framework
::
Tensor
>
(
framework
::
Tensor
(
*
output_tensor
));
return
std
::
make_shared
<
framework
::
Tensor
>
(
framework
::
Tensor
(
*
output_tensor
));
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
std
::
shared_ptr
<
framework
::
LoDTensor
>
Executor
<
Dtype
,
P
>::
PredictLod
(
std
::
shared_ptr
<
framework
::
LoDTensor
>
Executor
<
Dtype
,
P
>::
PredictLod
(
const
framework
::
LoDTensor
&
t
)
{
const
framework
::
LoDTensor
&
t
)
{
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"feed"
);
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"feed"
);
framework
::
LoDTensor
*
feed_tensor
=
framework
::
LoDTensor
*
feed_tensor
=
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
ShareDataWith
(
t
);
feed_tensor
->
ShareDataWith
(
t
);
feed_tensor
->
set_lod
(
t
.
lod
());
feed_tensor
->
set_lod
(
t
.
lod
());
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
...
@@ -584,8 +582,8 @@ std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
...
@@ -584,8 +582,8 @@ std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
std
::
vector
<
std
::
string
>
out_keys
=
(
*
last_op
)
->
GetOutKeys
();
PADDLE_MOBILE_ENFORCE
(
out_keys
.
size
()
>
0
,
"the last op contains no output"
);
PADDLE_MOBILE_ENFORCE
(
out_keys
.
size
()
>
0
,
"the last op contains no output"
);
framework
::
LoDTensor
*
output_tensor
=
framework
::
LoDTensor
*
output_tensor
=
framework
::
GetVarValue
<
framework
::
LoDTensor
>
(
out_keys
[
0
],
output_map
,
framework
::
GetVarValue
<
framework
::
LoDTensor
>
(
out_keys
[
0
],
output_map
,
*
(
program_
.
scope
));
*
(
program_
.
scope
));
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#ifdef PADDLE_EXECUTOR_MULTITHREAD
// TODO(haipeng): expose profile info as an interface, user can get them to
// TODO(haipeng): expose profile info as an interface, user can get them to
...
@@ -635,22 +633,22 @@ std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
...
@@ -635,22 +633,22 @@ std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
printf
(
"====================[---------]======================
\n
"
);
printf
(
"====================[---------]======================
\n
"
);
#endif
#endif
return
std
::
make_shared
<
framework
::
LoDTensor
>
(
return
std
::
make_shared
<
framework
::
LoDTensor
>
(
framework
::
LoDTensor
(
*
output_tensor
));
framework
::
LoDTensor
(
*
output_tensor
));
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
std
::
shared_ptr
<
framework
::
Tensor
>
Executor
<
Dtype
,
P
>::
Predict
(
std
::
shared_ptr
<
framework
::
Tensor
>
Executor
<
Dtype
,
P
>::
Predict
(
const
framework
::
Tensor
&
t
,
int
block_id
)
{
const
framework
::
Tensor
&
t
,
int
block_id
)
{
return
Predict
(
t
);
return
Predict
(
t
);
}
}
template
<
typename
Dtype
,
Precision
P
>
template
<
typename
Dtype
,
Precision
P
>
std
::
vector
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
Executor
<
Dtype
,
P
>::
Predict
(
std
::
vector
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
Executor
<
Dtype
,
P
>::
Predict
(
const
std
::
vector
<
Ptype
>
&
input
,
const
std
::
vector
<
int64_t
>
&
dims
)
{
const
std
::
vector
<
Ptype
>
&
input
,
const
std
::
vector
<
int64_t
>
&
dims
)
{
framework
::
Tensor
tensor
(
input
,
framework
::
make_ddim
(
dims
));
framework
::
Tensor
tensor
(
input
,
framework
::
make_ddim
(
dims
));
std
::
shared_ptr
<
framework
::
Tensor
>
output_tensor
=
Predict
(
tensor
,
0
);
std
::
shared_ptr
<
framework
::
Tensor
>
output_tensor
=
Predict
(
tensor
,
0
);
Executor
<
Dtype
,
P
>::
Ptype
*
output_ptr
=
Executor
<
Dtype
,
P
>::
Ptype
*
output_ptr
=
output_tensor
->
data
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
();
output_tensor
->
data
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
();
std
::
vector
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
result_vector
;
std
::
vector
<
typename
Executor
<
Dtype
,
P
>::
Ptype
>
result_vector
;
for
(
int
j
=
0
;
j
<
output_tensor
->
numel
();
++
j
)
{
for
(
int
j
=
0
;
j
<
output_tensor
->
numel
();
++
j
)
{
result_vector
.
push_back
(
output_ptr
[
j
]);
result_vector
.
push_back
(
output_ptr
[
j
]);
...
@@ -730,17 +728,153 @@ void Executor<Dtype, P>::Predict_To(int end) {
...
@@ -730,17 +728,153 @@ void Executor<Dtype, P>::Predict_To(int end) {
};
};
#endif
#endif
template
#ifdef PADDLE_MOBILE_FPGA
class
Executor
<
CPU
,
Precision
::
FP32
>;
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
InjectVariable
(
const
framework
::
Tensor
&
t
,
string
var_name
)
{
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
var_name
);
framework
::
Tensor
*
feed_tensor
=
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
ShareDataWith
(
t
);
};
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
FeedData
(
const
framework
::
Tensor
&
t
)
{
InjectVariable
(
t
,
"feed"
);
};
template
<
typename
Dtype
,
Precision
P
>
std
::
shared_ptr
<
framework
::
Tensor
>
Executor
<
Dtype
,
P
>::
FetchResult
(
int
id
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
PADDLE_MOBILE_ENFORCE
(
id
<
ops
.
size
(),
"Index out of range"
);
auto
last_op
=
id
<
0
?
ops
[
ops
.
size
()
-
1
]
:
ops
[
id
];
auto
output_map
=
last_op
->
Outputs
();
std
::
vector
<
std
::
string
>
out_keys
=
last_op
->
GetOutKeys
();
PADDLE_MOBILE_ENFORCE
(
!
out_keys
.
empty
(),
"the last op contains no output"
);
auto
*
output_tensor
=
framework
::
GetVarValue
<
framework
::
LoDTensor
>
(
out_keys
[
0
],
output_map
,
*
(
program_
.
scope
));
return
std
::
make_shared
<
framework
::
Tensor
>
(
framework
::
Tensor
(
*
output_tensor
));
};
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
Predict_From_To
(
int
start
,
int
end
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
0
);
auto
&
ops
=
ops_of_block_
[
*
to_predict_block
.
get
()];
end
=
end
<
0
?
(
int
)
ops
.
size
()
:
end
;
PADDLE_MOBILE_ENFORCE
(
start
>=
0
&&
start
<
end
&&
end
<=
ops
.
size
(),
"start or end parameter is wrong"
);
#ifdef PADDLE_MOBILE_PROFILE
std
::
vector
<
ProfInfo
>
profile
(
ops
.
size
());
#endif
for
(
int
i
=
start
;
i
<
end
;
i
++
)
{
#ifdef PADDLE_MOBILE_PROFILE
struct
timespec
ts
;
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
i
].
runBegin
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
DLOG
<<
"Running op: "
<<
i
<<
" "
<<
ops
[
i
]
->
Type
();
ops
[
i
]
->
Run
();
#ifdef PADDLE_MOBILE_PROFILE
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts
);
profile
[
i
].
runEnd
=
(
uint64_t
)
ts
.
tv_sec
*
1e9
+
ts
.
tv_nsec
;
#endif
}
};
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
Predict_From
(
int
start
)
{
Predict_From_To
(
start
);
};
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
Predict_To
(
int
end
)
{
Predict_From_To
(
0
,
end
);
};
#endif
#ifdef PADDLE_MOBILE_CL
template
template
<
>
class
Executor
<
FPGA
,
Precision
::
FP32
>;
void
Executor
<
GPU_CL
,
Precision
::
FP32
>::
InitMemory
()
{
for
(
const
auto
&
block
:
to_predict_program_
->
Blocks
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
auto
var
=
program_
.
scope
->
Var
(
var_desc
->
Name
());
if
(
var_desc
->
Persistable
())
{
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
if
(
var_desc
->
Name
()
==
"feed"
||
var_desc
->
Name
()
==
"fetch"
)
{
continue
;
}
template
char
*
origin_data
=
class
Executor
<
GPU_CL
,
Precision
::
FP32
>;
Get_binary_data
(
program_
.
model_path
+
"/"
+
var_desc
->
Name
());
cl_context
context
=
program_
.
scope
->
GetCLScpoe
()
->
Context
();
template
float
*
tensorInput
=
(
float
*
)
origin_data
;
class
Executor
<
GPU_MALI
,
Precision
::
FP32
>;
framework
::
DDim
ddim
=
cl_image
->
dims
();
cl_image
->
Init
(
context
,
tensorInput
,
ddim
);
delete
origin_data
;
}
}
}
}
template
<
>
void
Executor
<
GPU_CL
,
Precision
::
FP32
>::
InitCombineMemory
()
{
char
*
origin_data
;
if
(
program_
.
combined_params_buf
&&
program_
.
combined_params_len
)
{
LOG
(
kLOG_INFO
)
<<
"use outter memory"
;
origin_data
=
(
char
*
)
program_
.
combined_params_buf
;
}
else
{
LOG
(
kLOG_INFO
)
<<
" begin init combine memory"
;
origin_data
=
Get_binary_data
(
program_
.
para_path
);
}
PADDLE_MOBILE_ENFORCE
(
origin_data
!=
nullptr
,
"origin_data==nullptr!!!"
);
float
*
data
=
(
float
*
)
origin_data
;
for
(
const
auto
&
block
:
to_predict_program_
->
Blocks
())
{
for
(
const
auto
&
var_desc
:
block
->
Vars
())
{
auto
var
=
program_
.
scope
->
Var
(
var_desc
->
Name
());
if
(
var_desc
->
Persistable
())
{
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
if
(
var_desc
->
Name
()
==
"feed"
||
var_desc
->
Name
()
==
"fetch"
)
{
continue
;
}
cl_context
context
=
program_
.
scope
->
GetCLScpoe
()
->
Context
();
framework
::
DDim
ddim
=
cl_image
->
dims
();
int
numel
=
1
;
for
(
int
i
=
0
;
i
<
ddim
.
size
();
i
++
)
{
numel
=
numel
*
ddim
[
i
];
}
float
*
tensorInput
=
data
;
data
+=
numel
;
cl_image
->
Init
(
context
,
tensorInput
,
ddim
);
}
}
}
delete
origin_data
;
LOG
(
kLOG_INFO
)
<<
" end init combine memory "
;
}
}
#endif
template
class
Executor
<
CPU
,
Precision
::
FP32
>;
template
class
Executor
<
FPGA
,
Precision
::
FP32
>;
template
class
Executor
<
GPU_CL
,
Precision
::
FP32
>;
template
class
Executor
<
GPU_MALI
,
Precision
::
FP32
>;
}
// namespace framework
}
// namespace paddle_mobile
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录