提交 5cc517c9 编写于 作者: E eclipsycn 提交者: GitHub

Merge pull request #177 from Eclipsess/develop

fix #176 add elementwise_add_op
......@@ -46,5 +46,6 @@ target_link_libraries(paddle-mobile-static protobuf-lite openblas)
add_dependencies(paddle-mobile openblas_proj)
# gen test
ADD_EXECUTABLE(paddle-mobile-test test/main.cpp test/test_helper.h)
ADD_EXECUTABLE(paddle-mobile-test test/main.cpp test/test_helper.h
test/elementwise_add_op_test.h test/test_include.h)
target_link_libraries(paddle-mobile-test paddle-mobile)
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "elementwise_add_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void ElementwiseAddOp<Dtype, T>::InferShape() const {
auto x_dim = param_.InputX()->dims();
param_.Out()->Resize(x_dim);
}
template class ElementwiseAddOp<CPU, float>;
}
}
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "framework/operator.h"
#include "kernel/elementwise_add_kernel.h"
#include "op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ElementwiseAddOp
: public framework::OperatorWithKernel<DeviceType> {
public:
ElementwiseAddOp(const std::string &type,
const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(
type, inputs, outputs, attrs, scope),
param_(inputs, outputs, attrs, *scope) {}
void RunImpl() const {
operators::ElementwiseAddKernel<DeviceType, T,
ElementwiseAddParam>
kernel;
kernel.Compute(param_);
}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
ElementwiseAddParam param_;
};
}
}
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/elementwise_add_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename T> struct AddFunctor {
inline T operator()(T a, T b) const { return a + b; }
};
template <>
void ElementwiseAddKernel<CPU, float, ElementwiseAddParam>::Compute(
const ElementwiseAddParam &param) const {
const Tensor *input_x = param.InputX();
const Tensor *input_y = param.InputY();
Tensor *Out = param.Out();
Out->mutable_data<float>();
const int axis = param.Axis();
ElementwiseComputeEx<AddFunctor<float>, float>(
input_x, input_y, axis, AddFunctor<float>(), Out);
}
template class ElementwiseAddKernel<CPU, float, ElementwiseAddParam>;
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once;
#include "framework/operator.h"
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T, typename P>
class ElementwiseAddKernel
: public framework::OpKernelBase<DeviceType, ElementwiseAddParam> {
public:
void Compute(const ElementwiseAddParam &param) const;
};
}
}
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "transform.h"
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
namespace paddle_mobile {
namespace operators {
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
*/
inline void get_mid_dims(const framework::DDim &x_dims,
const framework::DDim &y_dims, const int axis,
int *pre, int *n, int *post) {
*pre = 1;
*n = 1;
*post = 1;
// compute pre
for (int i = 0; i < axis; ++i) {
(*pre) *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
assert(x_dims[i + axis] == y_dims[i]);
/// "Broadcast dimension mismatch.");
(*n) *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
(*post) *= x_dims[i];
}
}
/// remove dims tail 1. (4,20,1,1) -> (4,20)
inline void trim_trailing_singular_dims(framework::DDim *dims) {
// Remove trailing dimensions of size 1 for y
auto actual_dims_size = dims->size();
for (; actual_dims_size != 0; --actual_dims_size) {
if ((*dims)[actual_dims_size - 1] != 1)
break;
}
if (actual_dims_size != dims->size()) {
auto actual_dims = framework::vectorize(*dims);
actual_dims.resize(actual_dims_size);
*dims = framework::make_ddim(actual_dims);
}
}
template <typename T> class RowwiseTransformIterator {
public:
RowwiseTransformIterator(const T *ptr, int n)
: ptr_(ptr), i_(0), n_(n) {}
RowwiseTransformIterator<T> &operator++() {
++i_;
if (UNLIKELY(i_ == n_)) {
i_ = 0;
}
return *this;
}
bool operator==(const RowwiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) == &(*rhs);
}
bool operator!=(const RowwiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) != &(*rhs);
}
const T &operator*() { return ptr_[i_]; }
private:
const T *ptr_;
int i_;
int64_t n_;
};
/// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last
/// dimension
/// in (4,20,2) is 2 ,
/// (20,1) move 1 stride , to fill(add) 2 element with the same number.
template <typename T> class MidWiseTransformIterator {
public:
MidWiseTransformIterator(const T *ptr, int n, int post)
: ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}
MidWiseTransformIterator<T> &operator++() {
++j_;
if (UNLIKELY(j_ == post_)) {
++i_;
j_ = 0;
if (UNLIKELY(i_ == n_)) {
i_ = 0;
}
}
return *this;
}
bool operator==(const MidWiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) == &(*rhs);
}
bool operator!=(const MidWiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) != &(*rhs);
}
const T &operator*() { return ptr_[i_]; }
private:
const T *ptr_;
int64_t i_;
int64_t j_;
int64_t n_;
int64_t post_;
};
template <typename Functor, typename T, typename OutType = T>
class TransformFunctor {
public:
TransformFunctor(const framework::Tensor *x,
const framework::Tensor *y, framework::Tensor *z,
Functor func)
: x_(x->data<T>()), y_(y->data<T>()),
z_(z->mutable_data<OutType>()), nx_(x->numel()), func_(func) {
}
inline void Run() const {
math::Transform trans;
// 同时执行func(x_, y_)传入z_。
trans(x_, x_ + nx_, y_, z_, func_);
}
inline void RunRowWise(int n, int pre) const {
math::Transform trans;
trans(x_, x_ + nx_, RowwiseTransformIterator<T>(y_, n), z_,
func_);
}
inline void RunMidWise(int n, int pre, int post) const {
math::Transform trans;
trans(x_, x_ + nx_, MidWiseTransformIterator<T>(y_, n, post),
z_, func_);
}
private:
const T *x_;
const T *y_;
OutType *z_;
int64_t nx_;
Functor func_;
};
template <typename Functor, typename T, typename OutType = T>
void ElementwiseComputeEx(const framework::Tensor *x,
const framework::Tensor *y, int axis,
Functor func, framework::Tensor *z) {
TransformFunctor<Functor, T, OutType> functor(x, y, z, func);
auto x_dims = x->dims();
auto y_dims = y->dims();
// PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
// "Rank of first input must >= rank of second
// input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
/// axis = -1 represent the last dimension.
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
// PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
// "Axis should be in range [0, x_dims)");
trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
}
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
namespace paddle_mobile {
namespace operators {
namespace math {
// Transform applys a unary or a binary functor on each element in a
// range defined by a pair of iterators.
//
// - The specialization for CPU calls std::transform.
// - The specialization for CUDA calls thrust::tranform.
//
// NOTE: We need to define InputIter and OutputIter defined as
// different types, because the InputIter points op's inputs
// and
// OutputIter pints to op's outputs.
//
// NOTE: We don't assume that InputIter to be const InputType* and
// OutputIter to be OutputType*, because we might use a
// iterator
// class, paddle::fluid::operators::RowwiseTRansformIterator.
struct Transform {
template <typename InputIter, typename OutputIter,
typename UnaryOperation>
void operator()(InputIter first, InputIter last,
OutputIter result, UnaryOperation op) {
std::transform(first, last, result, op);
}
template <typename InputIter1, typename InputIter2,
typename OutputIter, typename BinaryOperation>
void operator()(InputIter1 first1, InputIter1 last1,
InputIter2 first2, OutputIter result,
BinaryOperation op) {
std::transform(first1, last1, first2, result, op);
}
};
}
} // namespace platform
} // namespace paddle
......@@ -38,12 +38,36 @@ namespace paddle_mobile {
return GetVarValue<T>("Input", inputs, scope);
}
template <typename T>
static T *InputXFrom(const VariableNameMap &inputs,
const Scope &scope) {
return GetVarValue<T>("X", inputs, scope);
}
template <typename T>
static T *InputYFrom(const VariableNameMap &inputs,
const Scope &scope) {
return GetVarValue<T>("Y", inputs, scope);
}
template <typename T>
static std::vector<T *>
InputMultiFrom(const VariableNameMap &inputs, const Scope &scope) {
return GetMultiVarValue<T>("Input", inputs, scope);
}
template <typename T>
static T *OutputFrom(const VariableNameMap &outputs,
const Scope &scope) {
return GetVarValue<T>("Output", outputs, scope);
}
template <typename T>
static T *OutFrom(const VariableNameMap &outputs,
const Scope &scope) {
return GetVarValue<T>("Out", outputs, scope);
}
template <typename T>
static T *FilterFrom(const VariableNameMap &inputs,
const Scope &scope) {
......@@ -69,6 +93,20 @@ namespace paddle_mobile {
return nullptr;
}
}
template <typename T>
static std::vector<T *>
GetMultiVarValue(std::string key, const VariableNameMap &var_map,
const Scope &scope) {
auto var_vecs = var_map.at(key);
assert(var_vecs.size() > 1);
std::vector<T *> var_res;
for (auto &var_vec : var_vecs) {
auto var = scope.FindVar(var_vec);
var_res.push_back(var->GetMutable<T>());
}
return var_res;
}
};
class ConvParam : OpParam {
......@@ -112,5 +150,86 @@ namespace paddle_mobile {
std::ostream &operator<<(std::ostream &os, const ConvParam &conv_param);
class ElementwiseAddParam : OpParam {
public:
ElementwiseAddParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
input_x_ = InputXFrom<framework::Tensor>(inputs, scope);
input_y_ = InputYFrom<framework::Tensor>(inputs, scope);
out_ = OutFrom<framework::Tensor>(outputs, scope);
axis_ = GetAttr<int>("axis", attrs);
}
const Tensor *InputX() const { return input_x_; }
const Tensor *InputY() const { return input_y_; }
Tensor *Out() const { return out_; }
const int &Axis() const { return axis_; }
private:
Tensor *input_x_;
Tensor *input_y_;
Tensor *out_;
int axis_;
};
class MulParam : OpParam {
public:
MulParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
input_x_ = InputXFrom<framework::Tensor>(inputs, scope);
input_y_ = InputYFrom<framework::Tensor>(inputs, scope);
out_ = OutFrom<framework::Tensor>(outputs, scope);
x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
}
const Tensor *InputX() const { return input_x_; }
const Tensor *InputY() const { return input_y_; }
Tensor *Out() const { return out_; }
const int &XNumColDims() const { return x_num_col_dims_; }
const int &YNumColDims() const { return y_num_col_dims_; }
private:
Tensor *input_x_;
Tensor *input_y_;
Tensor *out_;
int x_num_col_dims_;
int y_num_col_dims_;
};
class ConcatParam : public OpParam {
public:
ConcatParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
inputs_ = InputMultiFrom<framework::Tensor>(inputs, scope);
out_ = OutFrom<framework::Tensor>(outputs, scope);
axis_ = GetAttr<int>("axis", attrs);
}
std::vector<Tensor *> Inputs() const { return inputs_; }
Tensor *Out() const { return out_; }
const int &Axis() const { return axis_; }
private:
std::vector<Tensor *> inputs_;
Tensor *out_;
int axis_;
};
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "operators/elementwise_add_op.h"
#include "test_include.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype> class TestElementwiseAddOp {
public:
TestElementwiseAddOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// std::cout << " **block size " << blocks.size() << std::endl;
for (int i = 0; i < blocks.size(); ++i) {
std::shared_ptr<BlockDesc> block_desc = blocks[i];
std::vector<std::shared_ptr<OpDesc>> ops =
block_desc->Ops();
// std::cout << " ops " << ops.size() << std::endl;
for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op = ops[j];
if (op->Type() == "elementwise_add") {
if (op->GetAttrMap().at("axis").Get<int>() != -1) {
std::cout
<< "attr: axis = "
<< op->GetAttrMap().at("axis").Get<int>()
<< std::endl;
}
}
std::cout << "op:" << op->Type() << std::endl;
if (op->Type() == "elementwise_add" &&
op->Input("X")[0] == "batch_norm_2.tmp_2") {
std::cout << " elementwise_add attr size: "
<< op->GetAttrMap().size() << std::endl;
std::cout
<< " inputs size: " << op->GetInputs().size()
<< std::endl;
std::cout
<< " outputs size: " << op->GetOutputs().size()
<< std::endl;
std::cout << " Input X is : " << op->Input("X")[0]
<< std::endl;
std::cout << " Input Y is : " << op->Input("Y")[0]
<< std::endl;
std::cout
<< " Output Out is : " << op->Output("Out")[0]
<< std::endl;
Attribute axis_attr = op->GetAttrMap().at("axis");
int axis = axis_attr.Get<int>();
std::cout << " Attr axis is : " << axis
<< std::endl;
std::shared_ptr<
operators::ElementwiseAddOp<Dtype, float>>
add = std::make_shared<
operators::ElementwiseAddOp<Dtype, float>>(
op->Type(), op->GetInputs(),
op->GetOutputs(), op->GetAttrMap(),
program_.scope);
ops_of_block_[*block_desc.get()].push_back(add);
}
}
}
}
std::shared_ptr<Tensor> predict_add(Tensor &t1, Tensor &t2) {
// feed
auto scope = program_.scope;
Variable *x_feed_value = scope->Var("batch_norm_2.tmp_2");
auto tensor_x = x_feed_value->GetMutable<Tensor>();
tensor_x->ShareDataWith(t1);
Variable *y_feed_value = scope->Var("batch_norm_0.tmp_3");
auto tensor_y = y_feed_value->GetMutable<Tensor>();
tensor_y->ShareDataWith(t2);
Variable *con_output = scope->Var("elementwise_add_0.tmp_0");
Tensor *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 3, 224, 224});
// std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims()
// <<
// std::endl;
std::shared_ptr<Tensor> out_tensor =
std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict_add(t1, t2, 0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
void predict_add(const Tensor &t1, const Tensor &t2, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0;
j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
std::cout << "op -> run()" << std::endl;
op->Run();
}
}
};
template class TestElementwiseAddOp<CPU>;
} // namespace framework
namespace test {
void testElementwiseAdd() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(
std::string("../../test/models/"
"image_classification_resnet.inference.model"));
/// input x (1,3,224,224)
paddle_mobile::framework::Tensor inputx;
SetupTensor<float>(&inputx, {1, 3, 224, 224}, static_cast<float>(0),
static_cast<float>(1));
float *inputx_ptr = inputx.data<float>();
/// input y (224,)
paddle_mobile::framework::Tensor inputy;
SetupTensor<float>(&inputy, {224}, static_cast<float>(0),
static_cast<float>(1));
float *inputy_ptr = inputy.data<float>();
paddle_mobile::framework::TestElementwiseAddOp<paddle_mobile::CPU>
testElementwiseAddOp(program);
auto output_add = testElementwiseAddOp.predict_add(inputx, inputy);
float *output_add_ptr = output_add->data<float>();
for (int j = 0; j < output_add->numel(); ++j) {
// std::cout << "value of output: " << output_add_ptr[j] <<
// std::endl;
}
/// output (1,3,224,224)
std::cout << "output memory size : " << output_add->memory_size()
<< std::endl;
std::cout << "output numel : " << output_add->numel() << std::endl;
std::cout << inputx_ptr[226] << " + " << inputy_ptr[2] << " = "
<< output_add_ptr[226] << std::endl;
}
} // namespace test
} // namespace paddle_mobile
......@@ -16,6 +16,7 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "elementwise_add_op_test.h"
#include "framework/executor.h"
#include "io.h"
#include "test_helper.h"
......@@ -36,44 +37,44 @@ SOFTWARE.
//}
int main() {
std::string data_set = "cifar10";
//
// if (data_set == "cifar10") {
// SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32},
// static_cast<float>(0), static_cast<float>(1));
// } else if (data_set == "imagenet") {
// SetupTensor<float>(&input, {FLAGS_batch_size, 3, 224, 224},
// static_cast<float>(0), static_cast<float>(1));
// } else {
// LOG(FATAL) << "Only cifar10 or imagenet is supported.";
// }
std::string data_set = "cifar10";
//
// if (data_set == "cifar10") {
// SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32},
// static_cast<float>(0), static_cast<float>(1));
// } else if (data_set == "imagenet") {
// SetupTensor<float>(&input, {FLAGS_batch_size, 3, 224, 224},
// static_cast<float>(0), static_cast<float>(1));
// } else {
// LOG(FATAL) << "Only cifar10 or imagenet is supported.";
// }
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string(
"../../test/models/image_classification_resnet.inference.model"));
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string(
"../../test/models/image_classification_resnet.inference.model"));
paddle_mobile::framework::Executor<paddle_mobile::CPU> executor(program);
paddle_mobile::framework::Executor<paddle_mobile::CPU> executor(program);
paddle_mobile::framework::Tensor input;
SetupTensor<float>(&input, {1, 3, 32, 32}, static_cast<float>(0),
static_cast<float>(1));
float *input_ptr = input.data<float>();
for (int i = 0; i < input.numel(); ++i) {
// std::cout << input_ptr[i] << std::endl;
}
paddle_mobile::framework::Tensor input;
SetupTensor<float>(&input, {1, 3, 32, 32}, static_cast<float>(0),
static_cast<float>(1));
float *input_ptr = input.data<float>();
for (int i = 0; i < input.numel(); ++i) {
// std::cout << input_ptr[i] << std::endl;
}
// std::cout << "input: " << input.memory_size() << std::endl;
// std::cout << "input: " << input.numel() << std::endl;
// std::cout << "input: " << input.memory_size() << std::endl;
// std::cout << "input: " << input.numel() << std::endl;
auto output = executor.predict(input);
auto output = executor.predict(input);
// std::cout << "output: " << output->memory_size() << std::endl;
// std::cout << "output: " << output->numel() << std::endl;
// std::cout << "output: " << output->memory_size() << std::endl;
// std::cout << "output: " << output->numel() << std::endl;
// float* output_ptr = output->data<float>();
// for (int j = 0; j < output->numel(); ++j) {
// std::cout << " value of output: " << output_ptr[j] << std::endl;
// }
return 0;
// float* output_ptr = output->data<float>();
// for (int j = 0; j < output->numel(); ++j) {
// std::cout << " value of output: " << output_ptr[j] << std::endl;
//
paddle_mobile::test::testElementwiseAdd();
return 0;
}
......@@ -15,20 +15,21 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include <random>
#pragma once
#include "framework/ddim.h"
#include "framework/tensor.h"
#include <random>
template <typename T>
void SetupTensor(paddle_mobile::framework::Tensor* input,
void SetupTensor(paddle_mobile::framework::Tensor *input,
paddle_mobile::framework::DDim dims, T lower, T upper) {
static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1);
static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1);
T* input_ptr = input->mutable_data<T>(dims);
for (int i = 0; i < input->numel(); ++i) {
input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
T *input_ptr = input->mutable_data<T>(dims);
for (int i = 0; i < input->numel(); ++i) {
input_ptr[i] =
static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
#include "framework/block_desc.h"
#include "framework/framework.pb.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/program.h"
#include "framework/program_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
#include "framework/variable.h"
#include "io.h"
#include "test_helper.h"
#include <map>
#include <string>
#include <vector>
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册