Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
56ed27dd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
56ed27dd
编写于
1月 11, 2019
作者:
Z
zhangyang0701
提交者:
GitHub
1月 11, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into develop
上级
8d4a1c92
42b5170a
变更
31
隐藏空白更改
内联
并排
Showing
31 changed file
with
1363 addition
and
146 deletion
+1363
-146
src/common/types.cpp
src/common/types.cpp
+8
-1
src/common/types.h
src/common/types.h
+6
-0
src/framework/executor.cpp
src/framework/executor.cpp
+9
-9
src/framework/load_ops.h
src/framework/load_ops.h
+6
-0
src/operators/kernel/activation_kernel.h
src/operators/kernel/activation_kernel.h
+46
-0
src/operators/kernel/arm/activation_kernel.cpp
src/operators/kernel/arm/activation_kernel.cpp
+35
-9
src/operators/kernel/arm/sequence_expand_kernel.cpp
src/operators/kernel/arm/sequence_expand_kernel.cpp
+115
-0
src/operators/kernel/arm/sequence_pool_kernel.cpp
src/operators/kernel/arm/sequence_pool_kernel.cpp
+195
-0
src/operators/kernel/arm/sequence_softmax_kernel.cpp
src/operators/kernel/arm/sequence_softmax_kernel.cpp
+20
-20
src/operators/kernel/sequence_kernels.h
src/operators/kernel/sequence_kernels.h
+45
-0
src/operators/math/softmax.cpp
src/operators/math/softmax.cpp
+69
-57
src/operators/math/softmax.h
src/operators/math/softmax.h
+9
-1
src/operators/op_param.h
src/operators/op_param.h
+56
-4
src/operators/relu_op.cpp
src/operators/relu_op.cpp
+2
-1
src/operators/relu_op.h
src/operators/relu_op.h
+1
-1
src/operators/sequence_ops/sequence_expand_op.cpp
src/operators/sequence_ops/sequence_expand_op.cpp
+56
-0
src/operators/sequence_ops/sequence_expand_op.h
src/operators/sequence_ops/sequence_expand_op.h
+47
-0
src/operators/sequence_ops/sequence_pool_op.cpp
src/operators/sequence_ops/sequence_pool_op.cpp
+13
-13
src/operators/sequence_ops/sequence_pool_op.h
src/operators/sequence_ops/sequence_pool_op.h
+47
-0
src/operators/sequence_ops/sequence_softmax_op.cpp
src/operators/sequence_ops/sequence_softmax_op.cpp
+13
-18
src/operators/sequence_ops/sequence_softmax_op.h
src/operators/sequence_ops/sequence_softmax_op.h
+47
-0
src/operators/sigmoid_op.h
src/operators/sigmoid_op.h
+1
-1
src/operators/tanh_op.cpp
src/operators/tanh_op.cpp
+3
-0
src/operators/tanh_op.h
src/operators/tanh_op.h
+1
-1
test/CMakeLists.txt
test/CMakeLists.txt
+9
-0
test/operators/test_sequence_expand_op.cpp
test/operators/test_sequence_expand_op.cpp
+97
-0
test/operators/test_sequence_pool_op.cpp
test/operators/test_sequence_pool_op.cpp
+293
-0
test/operators/test_sequence_softmax_op.cpp
test/operators/test_sequence_softmax_op.cpp
+100
-0
test/operators/test_sigmoid_op.cpp
test/operators/test_sigmoid_op.cpp
+0
-9
test/operators/test_softmax_op.cpp
test/operators/test_softmax_op.cpp
+2
-1
tools/op.cmake
tools/op.cmake
+12
-0
未找到文件。
src/common/types.cpp
浏览文件 @
56ed27dd
...
...
@@ -89,6 +89,10 @@ const char *G_OP_TYPE_FUSION_DECONV_RELU = "fusion_deconv_relu";
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD
=
"fusion_deconv_add"
;
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_RELU
=
"fusion_deconv_add_relu"
;
const
char
*
G_OP_TYPE_SEQUENCE_EXPAND
=
"sequence_expand"
;
const
char
*
G_OP_TYPE_SEQUENCE_POOL
=
"sequence_pool"
;
const
char
*
G_OP_TYPE_SEQUENCE_SOFTMAX
=
"sequence_softmax"
;
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
op_input_output_key
=
{
...
...
@@ -162,5 +166,8 @@ std::unordered_map<
{
G_OP_TYPE_TANH
,
{{
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_ADD
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_ADD_RELU
,
{{
"Input"
},
{
"Out"
}}}};
{
G_OP_TYPE_FUSION_DECONV_ADD_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_SEQUENCE_EXPAND
,
{{
"X"
,
"Y"
},
{
"Out"
}}},
{
G_OP_TYPE_SEQUENCE_POOL
,
{{
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_SEQUENCE_SOFTMAX
,
{{
"X"
},
{
"Out"
}}}};
}
// namespace paddle_mobile
src/common/types.h
浏览文件 @
56ed27dd
...
...
@@ -105,6 +105,8 @@ enum ActivationType {
enum
PoolingType
{
MAX
=
0
,
AVG
=
1
,
SUM
=
2
,
FIRST
=
3
,
};
extern
const
char
*
G_OP_TYPE_CONV
;
...
...
@@ -169,6 +171,10 @@ extern const char *G_OP_TYPE_FUSION_DECONV_RELU;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_RELU
;
extern
const
char
*
G_OP_TYPE_SEQUENCE_EXPAND
;
extern
const
char
*
G_OP_TYPE_SEQUENCE_POOL
;
extern
const
char
*
G_OP_TYPE_SEQUENCE_SOFTMAX
;
extern
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
op_input_output_key
;
...
...
src/framework/executor.cpp
浏览文件 @
56ed27dd
...
...
@@ -90,28 +90,28 @@ Executor<Device, T>::Executor(const Program<Device> &program, int batch_size,
}
}
template
<
typename
Device
>
template
<
typename
T
>
static
void
LoadMemInternal
(
void
**
data
,
LoDTensor
*
tensor
,
bool
quant_uint8
=
false
)
{
char
**
data_buf
=
reinterpret_cast
<
char
**>
(
data
);
int64_t
size
=
tensor
->
numel
();
Device
*
tensor_data
=
tensor
->
mutable_data
<
Device
>
();
T
*
tensor_data
=
tensor
->
mutable_data
<
T
>
();
if
(
quant_uint8
)
{
// should be moved into operator init function
float
min_value
;
float
max_value
;
memory
::
Copy
(
&
min_value
,
data_buf
,
sizeof
(
float
));
memory
::
Copy
(
&
max_value
,
data_buf
+
sizeof
(
float
),
sizeof
(
float
));
data_buf
+=
2
*
sizeof
(
float
);
memory
::
Copy
(
&
min_value
,
*
data_buf
,
sizeof
(
float
));
memory
::
Copy
(
&
max_value
,
*
data_buf
+
sizeof
(
float
),
sizeof
(
float
));
*
data_buf
+=
2
*
sizeof
(
float
);
const
float
factor
=
(
max_value
-
min_value
)
/
255.0
;
const
uint8_t
*
uint8_data
=
reinterpret_cast
<
uint8_t
*>
(
data_buf
);
const
uint8_t
*
uint8_data
=
reinterpret_cast
<
uint8_t
*>
(
*
data_buf
);
for
(
int
k
=
0
;
k
<
size
;
++
k
)
{
tensor_data
[
k
]
=
uint8_data
[
k
]
*
factor
+
min_value
;
}
data_buf
+=
size
*
sizeof
(
uint8_t
);
*
data_buf
+=
size
*
sizeof
(
uint8_t
);
}
else
{
memory
::
Copy
(
tensor_data
,
*
data_buf
,
size
*
sizeof
(
Device
));
*
data_buf
+=
size
*
sizeof
(
Device
);
memory
::
Copy
(
tensor_data
,
*
data_buf
,
size
*
sizeof
(
T
));
*
data_buf
+=
size
*
sizeof
(
T
);
}
}
...
...
src/framework/load_ops.h
浏览文件 @
56ed27dd
...
...
@@ -264,3 +264,9 @@ LOAD_FUSION_MATCHER(fusion_dequant_add_bn_quant);
LOAD_OP1
(
fusion_dequant_add_bn_relu_quant
,
CPU
);
LOAD_FUSION_MATCHER
(
fusion_dequant_add_bn_relu_quant
);
#endif
#ifdef SEQUENCE_EXPAND_OP
LOAD_OP1
(
sequence_expand
,
CPU
);
#endif
#ifdef SEQUENCE_POOL_OP
LOAD_OP1
(
sequence_pool
,
CPU
);
#endif
src/operators/kernel/
central-arm-func/sigmoid_arm_func
.h
→
src/operators/kernel/
activation_kernel
.h
浏览文件 @
56ed27dd
...
...
@@ -11,77 +11,36 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SIGMOID_OP
#pragma once
#
include <cmath>
#
pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
#ifdef __ARM_NEON
#include <arm_neon.h>
#include "operators/math/math_func_neon.h"
#endif
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
DDim
;
void
sigmoid
(
const
Tensor
*
X
,
Tensor
*
Y
)
{
#ifdef __ARM_NEON
const
float
*
input
=
X
->
data
<
float
>
();
float
*
output
=
Y
->
mutable_data
<
float
>
();
const
DDim
&
dDim
=
X
->
dims
();
int
axis_index
=
1
;
if
(
dDim
.
size
()
<
4
)
{
axis_index
=
0
;
}
DDim
outer_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
0
,
axis_index
+
1
);
DDim
inner_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
axis_index
+
1
,
dDim
.
size
());
int
out_size
=
paddle_mobile
::
framework
::
product
(
outer_ddim
);
int
inner_size
=
paddle_mobile
::
framework
::
product
(
inner_ddim
);
#define DECLARE_KERNEL(KernelClass, KernelParam) \
template <typename DeviceType, typename T> \
class KernelClass \
: public framework::OpKernelBase<DeviceType, KernelParam<DeviceType>> { \
public: \
bool Init(KernelParam<DeviceType> *param); \
void Compute(const KernelParam<DeviceType> ¶m); \
};
#ifdef RELU_OP
DECLARE_KERNEL
(
ReluKernel
,
ReluParam
);
DECLARE_KERNEL
(
Relu6Kernel
,
ReluParam
);
#endif
DLOG
<<
"outsize="
<<
out_size
;
DLOG
<<
"innersize="
<<
inner_size
;
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
const
float
*
input_outer_ptr
=
input
+
i
*
inner_size
;
float
*
output_outer_ptr
=
output
+
i
*
inner_size
;
int
nn
=
inner_size
>>
2
;
int
remain
=
inner_size
-
(
nn
<<
2
);
float32x4_t
_one
=
vdupq_n_f32
(
1.
f
);
for
(;
nn
>
0
;
nn
--
)
{
float32x4_t
data
=
vld1q_f32
(
input_outer_ptr
);
data
=
vnegq_f32
(
data
);
data
=
exp_ps
(
data
);
data
=
vaddq_f32
(
data
,
_one
);
float32x4_t
out_data
=
vrecpeq_f32
(
data
);
out_data
=
vmulq_f32
(
vrecpsq_f32
(
data
,
out_data
),
out_data
);
vst1q_f32
(
output_outer_ptr
,
out_data
);
#ifdef SIGMOID_OP
DECLARE_KERNEL
(
SigmoidKernel
,
SigmoidParam
);
#endif
input_outer_ptr
+=
4
;
output_outer_ptr
+=
4
;
}
for
(;
remain
>
0
;
remain
--
)
{
*
output_outer_ptr
=
1.
f
/
(
1.
f
+
exp
(
-*
input_outer_ptr
));
output_outer_ptr
++
;
input_outer_ptr
++
;
}
}
#else
#ifdef TANH_OP
DECLARE_KERNEL
(
TanhKernel
,
TanhParam
);
#endif
}
template
<
typename
P
>
void
SigmoidCompute
(
const
SigmoidParam
<
CPU
>
&
param
)
{
const
Tensor
*
in_x
=
param
.
InputX
();
Tensor
*
out
=
param
.
Out
();
auto
x_dims
=
in_x
->
dims
();
out
->
Resize
(
x_dims
);
sigmoid
(
in_x
,
out
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/arm/
relu
_kernel.cpp
→
src/operators/kernel/arm/
activation
_kernel.cpp
浏览文件 @
56ed27dd
...
...
@@ -12,9 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RELU_OP
#include "operators/kernel/relu_kernel.h"
#include "operators/kernel/activation_kernel.h"
#include "common/types.h"
#include "operators/math/activation.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
...
...
@@ -25,12 +23,12 @@ namespace paddle_mobile {
namespace
operators
{
template
<
typename
Dtype
,
ActivationType
Act
>
struct
Relu
Compute
{
struct
Activation
Compute
{
void
operator
()(
const
Tensor
*
input
,
Tensor
*
output
)
{}
};
template
<
ActivationType
Act
>
struct
Relu
Compute
<
float
,
Act
>
{
struct
Activation
Compute
<
float
,
Act
>
{
void
operator
()(
const
Tensor
*
input
,
Tensor
*
output
)
{
const
float
*
x
=
input
->
data
<
float
>
();
float
*
y
=
output
->
mutable_data
<
float
>
();
...
...
@@ -65,6 +63,7 @@ struct ReluCompute<float, Act> {
}
};
#ifdef RELU_OP
template
<
>
bool
ReluKernel
<
CPU
,
float
>::
Init
(
ReluParam
<
CPU
>
*
param
)
{
return
true
;
...
...
@@ -74,7 +73,7 @@ template <>
void
ReluKernel
<
CPU
,
float
>::
Compute
(
const
ReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
InputX
();
Tensor
*
output
=
param
.
Out
();
Relu
Compute
<
float
,
RELU
>
()(
input
,
output
);
Activation
Compute
<
float
,
RELU
>
()(
input
,
output
);
}
template
<
>
...
...
@@ -86,10 +85,37 @@ template <>
void
Relu6Kernel
<
CPU
,
float
>::
Compute
(
const
ReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
InputX
();
Tensor
*
output
=
param
.
Out
();
Relu
Compute
<
float
,
RELU6
>
()(
input
,
output
);
Activation
Compute
<
float
,
RELU6
>
()(
input
,
output
);
}
#endif
}
// namespace operators
}
// namespace paddle_mobile
#ifdef SIGMOID_OP
template
<
>
bool
SigmoidKernel
<
CPU
,
float
>::
Init
(
SigmoidParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
SigmoidKernel
<
CPU
,
float
>::
Compute
(
const
SigmoidParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
InputX
();
Tensor
*
output
=
param
.
Out
();
ActivationCompute
<
float
,
SIGMOID
>
()(
input
,
output
);
}
#endif
#ifdef TANH_OP
template
<
>
void
TanhKernel
<
CPU
,
float
>::
Init
(
TanhParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
TanhKernel
<
CPU
,
float
>::
Compute
(
const
TanhParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
InputX
();
Tensor
*
output
=
param
.
Out
();
ActivationCompute
<
float
,
TANH
>
()(
input
,
output
);
}
#endif
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/arm/sequence_expand_kernel.cpp
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SEQUENCE_EXPAND_OP
#include <vector>
#include "operators/kernel/sequence_kernels.h"
namespace
paddle_mobile
{
namespace
operators
{
typedef
int
(
*
LoDElementFunctor
)(
const
std
::
vector
<
size_t
>
&
x_lod
,
int
index
);
int
element_with_lod
(
const
std
::
vector
<
size_t
>
&
x_lod
,
int
index
)
{
return
x_lod
[
index
];
}
int
element_without_lod
(
const
std
::
vector
<
size_t
>
&
x_lod
,
int
index
)
{
return
index
;
}
template
<
typename
T
>
inline
void
SequenceExpandImpl
(
const
framework
::
LoDTensor
&
x
,
const
std
::
vector
<
size_t
>
&
ref_lod
,
framework
::
LoDTensor
*
output
)
{
const
T
*
x_data
=
x
.
data
<
T
>
();
auto
&
x_lod
=
x
.
lod
();
LoDElementFunctor
lod_element
=
element_without_lod
;
if
(
x_lod
.
size
()
==
1
)
lod_element
=
element_with_lod
;
T
*
output_data
=
output
->
mutable_data
<
T
>
();
int
x_item_length
=
x
.
numel
()
/
x
.
dims
()[
0
];
int
out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
int
repeat_num
=
ref_lod
[
i
]
-
ref_lod
[
i
-
1
];
int
x_start
=
lod_element
(
x_lod
[
0
],
i
-
1
);
int
x_end
=
lod_element
(
x_lod
[
0
],
i
);
int
x_seq_len
=
x_end
-
x_start
;
if
(
repeat_num
>
0
)
{
int
out_start
=
out_offset
;
if
(
output
->
lod
().
size
()
==
1
)
{
out_start
=
output
->
lod
()[
0
][
out_offset
];
}
for
(
int
j
=
0
;
j
<
repeat_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
x_seq_len
;
k
++
)
{
memcpy
(
output_data
+
(
out_start
+
j
*
x_seq_len
+
k
)
*
x_item_length
,
x_data
+
(
x_start
+
k
)
*
x_item_length
,
x_item_length
*
sizeof
(
T
));
}
}
}
out_offset
+=
repeat_num
;
}
}
template
<
typename
T
>
class
SequenceExpandKernel
<
CPU
,
T
>
:
public
framework
::
OpKernelBase
<
CPU
,
SequenceExpandParam
<
CPU
>>
{
public:
bool
Init
(
SequenceExpandParam
<
CPU
>
*
param
)
{
return
true
;
}
void
Compute
(
const
SequenceExpandParam
<
CPU
>
&
param
)
{
const
framework
::
LoDTensor
*
input_x
=
param
.
input_x_
;
const
framework
::
LoDTensor
*
input_y
=
param
.
input_y_
;
framework
::
LoDTensor
*
output
=
param
.
output_
;
output
->
mutable_data
<
T
>
();
const
auto
&
x_lod
=
input_x
->
lod
();
const
auto
&
y_lod
=
input_y
->
lod
();
int
ref_level
=
param
.
ref_level_
;
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
input_x
,
output
);
output
->
set_lod
(
input_x
->
lod
());
return
;
}
std
::
vector
<
size_t
>
out_lod
;
if
(
x_lod
.
size
()
==
1
)
{
out_lod
.
push_back
(
0
);
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
int
x_start
=
x_lod
[
0
][
i
-
1
];
int
x_end
=
x_lod
[
0
][
i
];
int
x_seq_len
=
x_end
-
x_start
;
for
(
int
j
=
0
;
j
<
repeat_num
;
++
j
)
{
out_lod
.
push_back
(
out_lod
.
back
()
+
x_seq_len
);
}
}
}
output
->
set_lod
({
out_lod
});
SequenceExpandImpl
<
T
>
(
*
input_x
,
y_lod
[
ref_level
],
output
);
}
};
template
class
SequenceExpandKernel
<
CPU
,
float
>;
// template class SequenceExpandKernel<CPU, int64_t>;
}
// namespace operators
}
// namespace paddle_mobile
#endif // SEQUENCE_EXPAND_OP
src/operators/kernel/arm/sequence_pool_kernel.cpp
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SEQUENCE_POOL_OP
#include <cmath>
#include <limits>
#include <string>
#include <vector>
#include "common/types.h"
#include "operators/kernel/sequence_kernels.h"
#include "operators/math/pooling.h"
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif // __ARM_NEON__
namespace
paddle_mobile
{
namespace
operators
{
template
<
PoolingType
P
=
MAX
,
typename
T
=
float
>
void
SequencePoolImpl
(
const
framework
::
LoDTensor
&
input
,
framework
::
LoDTensor
*
output
)
{
const
float
*
input_ptr
=
input
.
data
<
float
>
();
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
const
auto
&
lod
=
input
.
lod
()[
0
];
int64_t
width
=
input
.
numel
()
/
input
.
dims
()[
0
];
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
const
float
*
in_ptr
=
input_ptr
+
lod
[
i
]
*
width
;
float
*
out_ptr
=
output_ptr
+
i
*
width
;
int64_t
height
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
if
(
width
==
1
)
{
float
max
=
-
std
::
numeric_limits
<
float
>::
max
();
int
remain_h
=
height
;
#ifdef __ARM_NEON__
int
loop
=
remain_h
>>
2
;
remain_h
=
remain_h
&
0x3
;
float32x4_t
__max4
=
math
::
vPoolInitq_f32
<
MAX
>
();
for
(
int
h
=
0
;
h
<
loop
;
++
h
)
{
float32x4_t
r0
=
vld1q_f32
(
in_ptr
);
__max4
=
vmaxq_f32
(
__max4
,
r0
);
in_ptr
+=
4
;
}
float32x2_t
__max2
=
vpmax_f32
(
vget_low_f32
(
__max4
),
vget_high_f32
(
__max4
));
__max2
=
vpmax_f32
(
__max2
,
__max2
);
max
=
std
::
max
(
max
,
vget_lane_f32
(
__max2
,
0
));
#endif // __ARM_NEON__
for
(
int
h
=
0
;
h
<
remain_h
;
++
h
)
{
max
=
std
::
max
(
max
,
in_ptr
[
h
]);
}
*
out_ptr
=
max
;
}
else
{
memcpy
(
out_ptr
,
in_ptr
,
width
*
sizeof
(
float
));
in_ptr
+=
width
;
int
remain_h
=
height
-
1
;
#ifdef __ARM_NEON__
int
remain_w_start
=
width
&
0xfffc
;
#endif // __ARM_NEON__
for
(
int
h
=
0
;
h
<
remain_h
;
++
h
)
{
#ifdef __ARM_NEON__
for
(
int
w
=
0
;
w
<
width
;
w
+=
4
)
{
float32x4_t
__in
=
vld1q_f32
(
in_ptr
+
w
);
float32x4_t
__out
=
vld1q_f32
(
out_ptr
+
w
);
__out
=
vmaxq_f32
(
__out
,
__in
);
vst1q_f32
(
out_ptr
+
w
,
__out
);
}
#endif // __ARM_NEON__
for
(
int
w
=
remain_w_start
;
w
<
width
;
++
w
)
{
out_ptr
[
w
]
=
std
::
max
(
out_ptr
[
w
],
in_ptr
[
w
]);
}
in_ptr
+=
width
;
}
}
}
}
template
<
>
void
SequencePoolImpl
<
SUM
,
float
>
(
const
framework
::
LoDTensor
&
input
,
framework
::
LoDTensor
*
output
)
{
const
float
*
input_ptr
=
input
.
data
<
float
>
();
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
const
auto
&
lod
=
input
.
lod
()[
0
];
int64_t
width
=
input
.
numel
()
/
input
.
dims
()[
0
];
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
const
float
*
in_ptr
=
input_ptr
+
lod
[
i
]
*
width
;
float
*
out_ptr
=
output_ptr
+
i
*
width
;
int64_t
height
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
if
(
width
==
1
)
{
float
sum
=
0.
f
;
int
remain_h
=
height
;
#ifdef __ARM_NEON__
int
loop
=
remain_h
>>
2
;
remain_h
=
remain_h
&
0x3
;
float32x4_t
__sum4
=
vdupq_n_f32
(
0.
f
);
for
(
int
h
=
0
;
h
<
loop
;
++
h
)
{
float32x4_t
r0
=
vld1q_f32
(
in_ptr
);
__sum4
=
vaddq_f32
(
__sum4
,
r0
);
in_ptr
+=
4
;
}
float32x2_t
__sum2
=
vpadd_f32
(
vget_low_f32
(
__sum4
),
vget_high_f32
(
__sum4
));
sum
+=
vget_lane_f32
(
__sum2
,
0
)
+
vget_lane_f32
(
__sum2
,
1
);
#endif // __ARM_NEON__
for
(
int
h
=
0
;
h
<
remain_h
;
++
h
)
{
sum
+=
in_ptr
[
h
];
}
*
out_ptr
=
sum
;
}
else
{
memcpy
(
out_ptr
,
in_ptr
,
width
*
sizeof
(
float
));
in_ptr
+=
width
;
int
remain_h
=
height
-
1
;
#ifdef __ARM_NEON__
int
loop_w
=
width
>>
2
;
int
remain_w_start
=
width
&
0xfffc
;
#endif // __ARM_NEON__
for
(
int
h
=
0
;
h
<
remain_h
;
++
h
)
{
#ifdef __ARM_NEON__
for
(
int
w
=
0
;
w
<
width
-
3
;
w
+=
4
)
{
float32x4_t
__in
=
vld1q_f32
(
in_ptr
+
w
);
float32x4_t
__out
=
vld1q_f32
(
out_ptr
+
w
);
__out
=
vaddq_f32
(
__out
,
__in
);
vst1q_f32
(
out_ptr
+
w
,
__out
);
}
#endif // __ARM_NEON__
for
(
int
w
=
remain_w_start
;
w
<
width
;
++
w
)
{
out_ptr
[
w
]
+=
in_ptr
[
w
];
}
in_ptr
+=
width
;
}
}
}
}
template
<
>
void
SequencePoolImpl
<
FIRST
,
float
>
(
const
framework
::
LoDTensor
&
input
,
framework
::
LoDTensor
*
output
)
{
const
float
*
input_ptr
=
input
.
data
<
float
>
();
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
const
auto
&
lod
=
input
.
lod
()[
0
];
int64_t
width
=
input
.
numel
()
/
input
.
dims
()[
0
];
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
const
float
*
in_ptr
=
input_ptr
+
lod
[
i
]
*
width
;
float
*
out_ptr
=
output_ptr
+
i
*
width
;
memcpy
(
out_ptr
,
in_ptr
,
width
*
sizeof
(
float
));
}
}
template
<
typename
T
>
class
SequencePoolKernel
<
CPU
,
T
>
:
public
framework
::
OpKernelBase
<
CPU
,
SequencePoolParam
<
CPU
>>
{
public:
bool
Init
(
SequencePoolParam
<
CPU
>
*
param
)
{
return
true
;
}
void
Compute
(
const
SequencePoolParam
<
CPU
>
&
param
)
{
const
framework
::
LoDTensor
*
input
=
param
.
input_
;
framework
::
LoDTensor
*
output
=
param
.
output_
;
output
->
mutable_data
<
T
>
();
const
std
::
string
pooling_type
=
param
.
pool_type_
;
if
(
param
.
pool_type_
==
"MAX"
)
{
SequencePoolImpl
<
MAX
,
T
>
(
*
input
,
output
);
}
else
if
(
param
.
pool_type_
==
"FIRST"
)
{
SequencePoolImpl
<
FIRST
,
T
>
(
*
input
,
output
);
}
else
if
(
param
.
pool_type_
==
"SUM"
)
{
SequencePoolImpl
<
SUM
,
T
>
(
*
input
,
output
);
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"pooling type `%s` has not been implemented."
,
param
.
pool_type_
.
c_str
());
}
}
};
template
class
SequencePoolKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif // SEQUENCE_POOL_OP
src/operators/kernel/arm/s
igmoid
_kernel.cpp
→
src/operators/kernel/arm/s
equence_softmax
_kernel.cpp
浏览文件 @
56ed27dd
...
...
@@ -12,32 +12,32 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SIGMOID_OP
#include "../sigmoid_kernel.h"
#include "../central-arm-func/sigmoid_arm_func.h"
#ifdef __ARM_NEON
#include "../../math/math_func_neon.h"
#endif
#include <cmath>
#ifdef SEQUENCE_SOFTMAX_OP
#include "framework/lod_tensor.h"
#include "operators/kernel/sequence_kernels.h"
#include "operators/math/softmax.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
DDim
;
using
framework
::
Tensor
;
template
<
typename
T
>
class
SequenceSoftmaxKernel
<
CPU
,
T
>
:
public
framework
::
OpKernelBase
<
CPU
,
SoftmaxParam
<
CPU
>>
{
public:
bool
Init
(
SoftmaxParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
bool
SigmoidKernel
<
CPU
,
float
>::
Init
(
SigmoidParam
<
CPU
>
*
param
)
{
return
true
;
}
void
Compute
(
const
SoftmaxParam
<
CPU
>
&
param
)
{
const
framework
::
LoDTensor
*
input
=
param
.
InputX
();
framework
::
LoDTensor
*
output
=
param
.
Out
();
math
::
SequenceSoftmaxFuntor
<
CPU
,
T
>
sequence_softmax
;
sequence_softmax
(
input
,
output
);
}
};
template
<
>
void
SigmoidKernel
<
CPU
,
float
>::
Compute
(
const
SigmoidParam
<
CPU
>
&
param
)
{
SigmoidCompute
<
float
>
(
param
);
}
template
class
SequenceSoftmaxKernel
<
CPU
,
float
>;
template
class
SigmoidKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
#endif
// SEQUENCE_SOFTMAX_OP
src/operators/kernel/sequence_kernels.h
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
#define DECLARE_KERNEL(KernelClass, KernelParam) \
template <typename DeviceType, typename T> \
class KernelClass \
: public framework::OpKernelBase<DeviceType, KernelParam<DeviceType>> { \
public: \
bool Init(KernelParam<DeviceType> *param); \
void Compute(const KernelParam<DeviceType> ¶m); \
};
#ifdef SEQUENCE_EXPAND_OP
DECLARE_KERNEL
(
SequenceExpandKernel
,
SequenceExpandParam
);
#endif // SEQUENCE_EXPAND_OP
#ifdef SEQUENCE_POOL_OP
DECLARE_KERNEL
(
SequencePoolKernel
,
SequencePoolParam
);
#endif // SEQUENCE_POOL_OP
#ifdef SEQUENCE_SOFTMAX_OP
DECLARE_KERNEL
(
SequenceSoftmaxKernel
,
SoftmaxParam
);
#endif // SEQUENCE_SOFTMAX_OP
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/softmax.cpp
浏览文件 @
56ed27dd
...
...
@@ -60,6 +60,58 @@ float find_max(const float *input, const int num_classes) {
return
max
;
}
void
SoftmaxBasic
(
const
float
*
input
,
int
num_classes
,
float
*
y
)
{
float
*
output
=
y
;
// find max
float
max
=
find_max
(
input
,
num_classes
);
// exp(x - max) and sum(exp(x - max))
int
remain
=
num_classes
;
float
sum
=
0.
f
;
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
int
loop
=
num_classes
>>
3
;
remain
=
num_classes
&
0x7
;
float32x4_t
__max
=
vdupq_n_f32
(
max
);
float32x4_t
__sum
=
vdupq_n_f32
(
0.
f
);
for
(
int
i
=
0
;
i
<
loop
;
++
i
,
input
+=
8
,
output
+=
8
)
{
float32x4_t
x0
=
vld1q_f32
(
input
);
float32x4_t
x1
=
vld1q_f32
(
input
+
4
);
x0
=
vsubq_f32
(
x0
,
__max
);
x1
=
vsubq_f32
(
x1
,
__max
);
x0
=
exp_ps
(
x0
);
x1
=
exp_ps
(
x1
);
__sum
=
vaddq_f32
(
x0
,
__sum
);
__sum
=
vaddq_f32
(
x1
,
__sum
);
vst1q_f32
(
output
,
x0
);
vst1q_f32
(
output
+
4
,
x1
);
}
sum
+=
vaddvq_f32
(
__sum
);
#endif // __ARM_NEON__
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
float
out
=
expf
(
input
[
i
]
-
max
);
sum
+=
out
;
output
[
i
]
=
out
;
}
// exp(x - max) / sum
float
inv_sum
=
1.
f
/
sum
;
output
=
y
;
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
float32x4_t
__inv_sum
=
vdupq_n_f32
(
inv_sum
);
for
(
int
i
=
0
;
i
<
loop
;
++
i
,
output
+=
8
)
{
float32x4_t
x0
=
vld1q_f32
(
output
);
float32x4_t
x1
=
vld1q_f32
(
output
+
4
);
x0
=
vmulq_f32
(
x0
,
__inv_sum
);
x1
=
vmulq_f32
(
x1
,
__inv_sum
);
vst1q_f32
(
output
,
x0
);
vst1q_f32
(
output
+
4
,
x1
);
}
#endif
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
output
[
i
]
*=
inv_sum
;
}
}
template
<
>
void
SoftmaxFuntor
<
CPU
,
float
>::
operator
()(
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
...
...
@@ -76,65 +128,25 @@ void SoftmaxFuntor<CPU, float>::operator()(const framework::Tensor *X,
size_t
offset
=
(
batch
*
channels
+
channel
)
*
num_classes
;
const
float
*
input
=
x
+
offset
;
float
*
output
=
y
+
offset
;
// find max
float
max
=
find_max
(
input
,
num_classes
);
// exp(x - max)
int
remain
=
num_classes
;
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
int
loop
=
num_classes
>>
3
;
remain
=
num_classes
&
0x7
;
float32x4_t
__max
=
vdupq_n_f32
(
max
);
for
(
int
i
=
0
;
i
<
loop
;
++
i
,
input
+=
8
,
output
+=
8
)
{
float32x4_t
x0
=
vld1q_f32
(
input
);
float32x4_t
x1
=
vld1q_f32
(
input
+
4
);
x0
=
vsubq_f32
(
x0
,
__max
);
x1
=
vsubq_f32
(
x1
,
__max
);
x0
=
exp_ps
(
x0
);
x1
=
exp_ps
(
x1
);
vst1q_f32
(
output
,
x0
);
vst1q_f32
(
output
+
4
,
x1
);
}
#endif // __ARM_NEON__
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
output
[
i
]
=
expf
(
input
[
i
]
-
max
);
}
SoftmaxBasic
(
input
,
num_classes
,
output
);
}
}
}
// sum(exp(x - max))
float
sum
=
0.
f
;
output
=
y
+
offset
;
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
float32x4_t
__sum
=
vdupq_n_f32
(
0.
f
);
for
(
int
i
=
0
;
i
<
loop
;
++
i
,
output
+=
8
)
{
float32x4_t
x0
=
vld1q_f32
(
output
);
float32x4_t
x1
=
vld1q_f32
(
output
+
4
);
__sum
=
vaddq_f32
(
x0
,
__sum
);
__sum
=
vaddq_f32
(
x1
,
__sum
);
}
sum
+=
vaddvq_f32
(
__sum
);
#endif // __ARM_NEON__
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
sum
+=
output
[
i
];
}
template
<
>
void
SequenceSoftmaxFuntor
<
CPU
,
float
>::
operator
()(
const
framework
::
LoDTensor
*
X
,
framework
::
LoDTensor
*
Y
)
{
const
float
*
x
=
X
->
data
<
float
>
();
const
auto
&
lod
=
X
->
lod
().
back
();
float
*
y
=
Y
->
mutable_data
<
float
>
();
// exp(x - max) / sum
float
inv_sum
=
1.
f
/
sum
;
output
=
y
+
offset
;
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
float32x4_t
__inv_sum
=
vdupq_n_f32
(
inv_sum
);
for
(
int
i
=
0
;
i
<
loop
;
++
i
,
output
+=
8
)
{
float32x4_t
x0
=
vld1q_f32
(
output
);
float32x4_t
x1
=
vld1q_f32
(
output
+
4
);
x0
=
vmulq_f32
(
x0
,
__inv_sum
);
x1
=
vmulq_f32
(
x1
,
__inv_sum
);
vst1q_f32
(
output
,
x0
);
vst1q_f32
(
output
+
4
,
x1
);
}
#endif
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
output
[
i
]
*=
inv_sum
;
}
}
#pragma omp parallel for
for
(
int
batch
=
0
;
batch
<
lod
.
size
()
-
1
;
++
batch
)
{
int
num_classes
=
lod
[
batch
+
1
]
-
lod
[
batch
];
size_t
offset
=
lod
[
batch
];
const
float
*
input
=
x
+
offset
;
float
*
output
=
y
+
offset
;
SoftmaxBasic
(
input
,
num_classes
,
output
);
}
}
...
...
src/operators/math/softmax.h
浏览文件 @
56ed27dd
...
...
@@ -12,10 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if
def SOFTMAX_OP
#if
defined(SOFTMAX_OP) || defined(SEQUENCE_SOFTMAX_OP)
#pragma once
#include "framework/lod_tensor.h"
#include "framework/tensor.h"
namespace
paddle_mobile
{
...
...
@@ -28,7 +29,14 @@ class SoftmaxFuntor {
void
operator
()(
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
);
};
template
<
typename
Device
,
typename
T
>
class
SequenceSoftmaxFuntor
{
public:
void
operator
()(
const
framework
::
LoDTensor
*
X
,
framework
::
LoDTensor
*
Y
);
};
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/op_param.h
浏览文件 @
56ed27dd
...
...
@@ -978,12 +978,12 @@ class SoftmaxParam : public OpParam {
input_x_
=
InputXFrom
<
GType
>
(
inputs
,
scope
);
out_
=
OutFrom
<
GType
>
(
outputs
,
scope
);
}
const
R
Type
*
InputX
()
const
{
return
input_x_
;
}
R
Type
*
Out
()
const
{
return
out_
;
}
const
G
Type
*
InputX
()
const
{
return
input_x_
;
}
G
Type
*
Out
()
const
{
return
out_
;
}
private:
R
Type
*
input_x_
;
R
Type
*
out_
;
G
Type
*
input_x_
;
G
Type
*
out_
;
#ifdef PADDLE_MOBILE_FPGA
...
...
@@ -2737,5 +2737,57 @@ class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
};
#endif
#ifdef SEQUENCE_EXPAND_OP
template
<
typename
Dtype
>
class
SequenceExpandParam
:
public
OpParam
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
SequenceExpandParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
GType
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
GType
>
(
inputs
,
scope
);
output_
=
OutFrom
<
GType
>
(
outputs
,
scope
);
ref_level_
=
-
1
;
if
(
OpParam
::
HasAttr
(
"ref_level"
,
attrs
))
{
ref_level_
=
OpParam
::
GetAttr
<
int
>
(
"ref_level"
,
attrs
);
}
}
public:
GType
*
input_x_
;
GType
*
input_y_
;
GType
*
output_
;
int
ref_level_
;
};
#endif // SEQUENCE_EXPAND_OP
#ifdef SEQUENCE_POOL_OP
template
<
typename
Dtype
>
class
SequencePoolParam
:
public
OpParam
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
SequencePoolParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_
=
InputXFrom
<
GType
>
(
inputs
,
scope
);
output_
=
OutFrom
<
GType
>
(
outputs
,
scope
);
pool_type_
=
"MAX"
;
if
(
OpParam
::
HasAttr
(
"pooltype"
,
attrs
))
{
pool_type_
=
OpParam
::
GetStringAttr
(
"pooltype"
,
attrs
);
}
}
public:
GType
*
input_
;
GType
*
output_
;
std
::
string
pool_type_
;
};
#endif // SEQUENCE_EXPAND_OP
}
// namespace operators
}
// namespace paddle_mobile
src/operators/relu_op.cpp
浏览文件 @
56ed27dd
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef RELU_OP
#include "operators/relu_op.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -47,4 +48,4 @@ REGISTER_OPERATOR_MALI_GPU(relu, ops::ReluOp);
REGISTER_OPERATOR_CL
(
relu
,
ops
::
ReluOp
);
#endif
#endif
#endif
// RELU_OP
src/operators/relu_op.h
浏览文件 @
56ed27dd
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
#include <string>
#include "framework/operator.h"
#include "operators/kernel/
relu
_kernel.h"
#include "operators/kernel/
activation
_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
src/operators/sequence_ops/sequence_expand_op.cpp
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SEQUENCE_EXPAND_OP
#include "operators/sequence_ops/sequence_expand_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
void
SequenceExpandOp
<
DeviceType
,
T
>::
InferShape
()
const
{
const
auto
*
input_x
=
this
->
param_
.
input_x_
;
const
auto
*
input_y
=
this
->
param_
.
input_y_
;
const
auto
&
x_lod
=
input_x
->
lod
();
const
auto
&
y_lod
=
input_y
->
lod
();
int
ref_level
=
this
->
param_
.
ref_level_
;
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
auto
out_dims
=
input_x
->
dims
();
int64_t
out_first_dim
=
0
;
if
(
y_lod
[
ref_level
].
size
()
>
1
)
{
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
x_seq_len
=
1
;
if
(
x_lod
.
size
()
==
1
)
{
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
}
out_first_dim
+=
(
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
])
*
x_seq_len
;
}
out_dims
[
0
]
=
out_first_dim
;
}
this
->
param_
.
output_
->
Resize
(
out_dims
);
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
sequence_expand
,
ops
::
SequenceExpandOp
);
#endif
#endif // SEQUENCE_EXPAND_OP
src/operators/sequence_ops/sequence_expand_op.h
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SEQUENCE_EXPAND_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/sequence_kernels.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
SequenceExpandOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
SequenceExpandParam
<
DeviceType
>
,
operators
::
SequenceExpandKernel
<
DeviceType
,
T
>>
{
public:
SequenceExpandOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
SequenceExpandParam
<
DeviceType
>
,
operators
::
SequenceExpandKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
// inference output shape
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // SEQUENCE_EXPAND_OP
src/operators/
kernel/sigmoid_kernel.h
→
src/operators/
sequence_ops/sequence_pool_op.cpp
浏览文件 @
56ed27dd
...
...
@@ -12,27 +12,27 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#
pragma once
#
ifdef SEQUENCE_POOL_OP
#ifdef SIGMOID_OP
#include "framework/operator.h"
#include "operators/op_param.h"
#include "operators/sequence_ops/sequence_pool_op.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
SigmoidKernel
:
public
OpKernelBase
<
DeviceType
,
SigmoidParam
<
DeviceType
>>
{
public:
void
Compute
(
const
SigmoidParam
<
DeviceType
>&
param
)
;
bool
Init
(
SigmoidParam
<
DeviceType
>*
param
);
}
;
void
SequencePoolOp
<
DeviceType
,
T
>::
InferShape
()
const
{
const
auto
*
input
=
this
->
param_
.
input_
;
auto
out_dims
=
input
->
dims
();
out_dims
[
0
]
=
input
->
lod
()[
0
].
size
()
-
1
;
this
->
param_
.
output_
->
Resize
(
out_dims
);
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
sequence_pool
,
ops
::
SequencePoolOp
);
#endif
#endif // SEQUENCE_POOL_OP
src/operators/sequence_ops/sequence_pool_op.h
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SEQUENCE_POOL_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/sequence_kernels.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
SequencePoolOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
SequencePoolParam
<
DeviceType
>
,
operators
::
SequencePoolKernel
<
DeviceType
,
T
>>
{
public:
SequencePoolOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
SequencePoolParam
<
DeviceType
>
,
operators
::
SequencePoolKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
// inference output shape
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // SEQUENCE_POOL_OP
src/operators/
kernel/relu_kernel.h
→
src/operators/
sequence_ops/sequence_softmax_op.cpp
浏览文件 @
56ed27dd
...
...
@@ -12,33 +12,28 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef
RELU
_OP
#ifdef
SEQUENCE_SOFTMAX
_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
#include "operators/sequence_ops/sequence_softmax_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
ReluKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
ReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
ReluParam
<
DeviceType
>&
param
);
bool
Init
(
ReluParam
<
DeviceType
>*
param
);
};
void
SequenceSoftmaxOp
<
DeviceType
,
T
>::
InferShape
()
const
{
const
auto
*
input_x
=
this
->
param_
.
InputX
();
const
auto
&
x_lod
=
input_x
->
lod
();
template
<
typename
DeviceType
,
typename
T
>
class
Relu6Kernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
ReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
ReluParam
<
DeviceType
>&
param
);
bool
Init
(
ReluParam
<
DeviceType
>*
param
);
};
this
->
param_
.
Out
()
->
Resize
(
input_x
->
dims
());
this
->
param_
.
Out
()
->
set_lod
(
input_x
->
lod
());
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
sequence_softmax
,
ops
::
SequenceSoftmaxOp
);
#endif
#endif // SEQUENCE_SOFTMAX_OP
src/operators/sequence_ops/sequence_softmax_op.h
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SEQUENCE_SOFTMAX_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/sequence_kernels.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
SequenceSoftmaxOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
SoftmaxParam
<
DeviceType
>
,
operators
::
SequenceSoftmaxKernel
<
DeviceType
,
T
>>
{
public:
SequenceSoftmaxOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
SoftmaxParam
<
DeviceType
>
,
operators
::
SequenceSoftmaxKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
// inference output shape
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // SEQUENCE_SOFTMAX_OP
src/operators/sigmoid_op.h
浏览文件 @
56ed27dd
...
...
@@ -18,7 +18,7 @@ limitations under the License. */
#include <string>
#include "framework/operator.h"
#include "operators/kernel/
sigmoid
_kernel.h"
#include "operators/kernel/
activation
_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
src/operators/tanh_op.cpp
浏览文件 @
56ed27dd
...
...
@@ -28,6 +28,9 @@ void TanhOp<DeviceType, T>::InferShape() const {
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
tanh
,
ops
::
TanhOp
);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA
(
tanh
,
ops
::
TanhOp
);
#endif
...
...
src/operators/tanh_op.h
浏览文件 @
56ed27dd
...
...
@@ -18,7 +18,7 @@ limitations under the License. */
#include <string>
#include "framework/operator.h"
#include "operators/kernel/
tanh
_kernel.h"
#include "operators/kernel/
activation
_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
test/CMakeLists.txt
浏览文件 @
56ed27dd
...
...
@@ -385,4 +385,13 @@ if (NOT FOUND_MATCH)
# gen test
ADD_EXECUTABLE
(
test-ocr net/test_ocr.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-ocr paddle-mobile
)
ADD_EXECUTABLE
(
test-sequence-expand operators/test_sequence_expand_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-sequence-expand paddle-mobile
)
ADD_EXECUTABLE
(
test-sequence-pool operators/test_sequence_pool_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-sequence-pool paddle-mobile
)
ADD_EXECUTABLE
(
test-sequence-softmax operators/test_sequence_softmax_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-sequence-softmax paddle-mobile
)
endif
()
test/operators/test_sequence_expand_op.cpp
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_include.h"
#include "operators/sequence_ops/sequence_expand_op.h"
namespace
paddle_mobile
{
int
TestSequenceExpandOp
(
const
framework
::
LoDTensor
&
input_x
,
const
framework
::
LoDTensor
&
input_y
,
int
ref_level
,
framework
::
LoDTensor
*
output
)
{
VariableNameMap
inputs
;
VariableNameMap
outputs
;
auto
scope
=
std
::
make_shared
<
framework
::
Scope
>
();
inputs
[
"X"
]
=
std
::
vector
<
std
::
string
>
({
"input_x"
});
inputs
[
"Y"
]
=
std
::
vector
<
std
::
string
>
({
"input_y"
});
outputs
[
"Out"
]
=
std
::
vector
<
std
::
string
>
({
"output"
});
auto
input_x_var
=
scope
.
get
()
->
Var
(
"input_x"
);
auto
*
x
=
input_x_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
x
->
Resize
(
input_x
.
dims
());
x
->
ShareDataWith
(
input_x
);
x
->
set_lod
(
input_x
.
lod
());
auto
input_y_var
=
scope
.
get
()
->
Var
(
"input_y"
);
auto
*
y
=
input_y_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
y
->
Resize
(
framework
::
make_ddim
({
0
}));
y
->
mutable_data
<
float
>
();
y
->
set_lod
(
input_y
.
lod
());
auto
output_var
=
scope
.
get
()
->
Var
(
"output"
);
framework
::
AttributeMap
attrs
;
attrs
[
"ref_level"
].
Set
<
int
>
(
0
);
auto
*
op
=
new
operators
::
SequenceExpandOp
<
CPU
,
float
>
(
"sequence_expand"
,
inputs
,
outputs
,
attrs
,
scope
);
op
->
InferShape
();
op
->
Init
();
op
->
Run
();
auto
*
out
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
output
->
Resize
(
out
->
dims
());
output
->
ShareDataWith
(
*
out
);
output
->
set_lod
(
out
->
lod
());
delete
op
;
return
0
;
}
}
// namespace paddle_mobile
// namespace framework = paddle_mobile::framework;
int
main
(
int
argc
,
char
*
argv
[])
{
framework
::
LoDTensor
input_x
,
input_y
,
output
;
// case 1
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
4
;
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
input_y
.
set_lod
({{
0
,
2
,
4
},
{
0
,
3
,
6
,
7
,
8
}});
TestSequenceExpandOp
(
input_x
,
input_y
,
0
,
&
output
);
std
::
vector
<
float
>
expect_data
{
1
,
2
,
1
,
2
,
3
,
4
,
3
,
4
};
std
::
vector
<
int
>
expect_lod
{
0
,
2
,
4
,
6
,
8
};
for
(
int
i
=
0
;
i
<
5
;
++
i
)
{
if
(
output
.
lod
()[
0
][
i
]
!=
expect_lod
[
i
])
{
std
::
cerr
<<
"output_lod["
<<
i
<<
"]: "
<<
output
.
lod
()[
0
][
i
]
<<
" != expect_lod["
<<
i
<<
"]: "
<<
expect_lod
[
i
]
<<
std
::
endl
;
return
1
;
}
}
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
return
0
;
}
test/operators/test_sequence_pool_op.cpp
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_include.h"
#include "operators/sequence_ops/sequence_pool_op.h"
namespace
paddle_mobile
{
int
TestSequencePoolOp
(
const
framework
::
LoDTensor
&
input_x
,
const
std
::
string
pool_type
,
framework
::
LoDTensor
*
output
)
{
VariableNameMap
inputs
;
VariableNameMap
outputs
;
auto
scope
=
std
::
make_shared
<
framework
::
Scope
>
();
inputs
[
"X"
]
=
std
::
vector
<
std
::
string
>
({
"input_x"
});
outputs
[
"Out"
]
=
std
::
vector
<
std
::
string
>
({
"output"
});
auto
input_x_var
=
scope
.
get
()
->
Var
(
"input_x"
);
auto
*
x
=
input_x_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
x
->
Resize
(
input_x
.
dims
());
x
->
ShareDataWith
(
input_x
);
x
->
set_lod
(
input_x
.
lod
());
auto
output_var
=
scope
.
get
()
->
Var
(
"output"
);
framework
::
AttributeMap
attrs
;
attrs
[
"pooltype"
].
SetString
(
pool_type
);
auto
*
op
=
new
operators
::
SequencePoolOp
<
CPU
,
float
>
(
"sequence_pool"
,
inputs
,
outputs
,
attrs
,
scope
);
op
->
InferShape
();
op
->
Init
();
op
->
Run
();
auto
*
out
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
output
->
Resize
(
out
->
dims
());
output
->
ShareDataWith
(
*
out
);
delete
op
;
return
0
;
}
}
// namespace paddle_mobile
// namespace framework = paddle_mobile::framework;
int
main
(
int
argc
,
char
*
argv
[])
{
framework
::
LoDTensor
input_x
,
output
;
// case 1
std
::
cerr
<<
"running max case 1"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
4
;
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"MAX"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
2
,
4
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 2
std
::
cerr
<<
"running max case 2"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
};
input_x
.
Resize
(
framework
::
make_ddim
({
data
.
size
(),
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
3
,
10
}});
TestSequencePoolOp
(
input_x
,
"MAX"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
3
,
10
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
std
::
cerr
<<
"running max case 3"
<<
std
::
endl
;
// case 3
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
2
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"MAX"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
3
,
4
,
7
,
8
};
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 4
std
::
cerr
<<
"running max case 4"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
5
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"MAX"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
6
,
7
,
8
,
9
,
10
,
16
,
17
,
18
,
19
,
20
};
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 1
std
::
cerr
<<
"running sum case 1"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
4
;
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"SUM"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
3
,
7
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 2
std
::
cerr
<<
"running sum case 2"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
};
input_x
.
Resize
(
framework
::
make_ddim
({
data
.
size
(),
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
3
,
10
}});
TestSequencePoolOp
(
input_x
,
"SUM"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
6
,
49
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 3
std
::
cerr
<<
"running sum case 3"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
2
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"SUM"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
4
,
6
,
12
,
14
};
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 4
std
::
cerr
<<
"running sum case 4"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
5
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"SUM"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
7
,
9
,
11
,
13
,
15
,
27
,
29
,
31
,
33
,
35
};
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 1
std
::
cerr
<<
"running first case 1"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
4
;
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"FIRST"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
1
,
3
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 2
std
::
cerr
<<
"running first case 2"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
};
input_x
.
Resize
(
framework
::
make_ddim
({
data
.
size
(),
1
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
3
,
10
}});
TestSequencePoolOp
(
input_x
,
"FIRST"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
1
,
4
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 3
std
::
cerr
<<
"running first case 3"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
2
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"FIRST"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
1
,
2
,
5
,
6
};
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
// case 4
std
::
cerr
<<
"running first case 4"
<<
std
::
endl
;
{
std
::
vector
<
float
>
data
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
};
input_x
.
Resize
(
framework
::
make_ddim
({
4
,
5
}));
float
*
in_data
=
input_x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
data
.
size
();
++
i
)
in_data
[
i
]
=
data
[
i
];
input_x
.
set_lod
({{
0
,
2
,
4
}});
TestSequencePoolOp
(
input_x
,
"FIRST"
,
&
output
);
std
::
vector
<
float
>
expect_data
{
1
,
2
,
3
,
4
,
5
,
11
,
12
,
13
,
14
,
15
};
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
if
(
output
.
data
<
float
>
()[
i
]
!=
expect_data
[
i
])
{
std
::
cerr
<<
"output["
<<
i
<<
"]: "
<<
output
.
data
<
float
>
()[
i
]
<<
" != expect["
<<
i
<<
"]: "
<<
expect_data
[
i
]
<<
std
::
endl
;
return
1
;
}
}
}
return
0
;
}
test/operators/test_sequence_softmax_op.cpp
0 → 100644
浏览文件 @
56ed27dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <math.h>
#include <limits>
#include "../test_include.h"
#include "operators/sequence_ops/sequence_softmax_op.h"
namespace
paddle_mobile
{
void
SequenceSoftmax
(
const
framework
::
LoDTensor
*
X
,
framework
::
LoDTensor
*
Y
)
{
const
float
*
x
=
X
->
data
<
float
>
();
const
auto
&
lod
=
X
->
lod
().
back
();
float
*
y
=
Y
->
mutable_data
<
float
>
();
for
(
int
batch
=
0
;
batch
<
lod
.
size
()
-
1
;
++
batch
)
{
int
num_classes
=
lod
[
batch
+
1
]
-
lod
[
batch
];
size_t
offset
=
lod
[
batch
];
const
float
*
input
=
x
+
offset
;
float
*
output
=
y
+
offset
;
float
max
=
-
std
::
numeric_limits
<
float
>::
max
();
for
(
int
j
=
0
;
j
<
num_classes
;
++
j
)
{
max
=
(
input
[
j
]
>
max
)
?
input
[
j
]
:
max
;
}
float
sum
=
0.
f
;
for
(
int
j
=
0
;
j
<
num_classes
;
++
j
)
{
float
tmp
=
std
::
expf
(
input
[
j
]
-
max
);
sum
+=
tmp
;
output
[
j
]
=
tmp
;
}
for
(
int
j
=
0
;
j
<
num_classes
;
++
j
)
{
output
[
j
]
/=
sum
;
}
}
Y
->
set_lod
(
X
->
lod
());
}
int
TestSequenceSoftmaxOp
(
const
std
::
vector
<
int
>
&
input_shape
,
const
std
::
vector
<
size_t
>
&
input_lod
)
{
framework
::
DDim
dims
=
framework
::
make_ddim
(
input_shape
);
VariableNameMap
inputs
;
VariableNameMap
outputs
;
auto
scope
=
std
::
make_shared
<
framework
::
Scope
>
();
inputs
[
"X"
]
=
std
::
vector
<
std
::
string
>
({
"input"
});
outputs
[
"Out"
]
=
std
::
vector
<
std
::
string
>
({
"output"
});
auto
input_var
=
scope
.
get
()
->
Var
(
"input"
);
auto
input
=
input_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
SetupTensor
<
float
>
(
input
,
dims
,
-
100.0
,
100.0
);
input
->
set_lod
({
input_lod
});
auto
output_var
=
scope
.
get
()
->
Var
(
"output"
);
framework
::
AttributeMap
attrs
;
auto
*
op
=
new
operators
::
SequenceSoftmaxOp
<
CPU
,
float
>
(
"sequence_softmax"
,
inputs
,
outputs
,
attrs
,
scope
);
op
->
InferShape
();
op
->
Init
();
op
->
Run
();
auto
output
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
framework
::
LoDTensor
output_cmp
;
float
*
output_cmp_data
=
output_cmp
.
mutable_data
<
float
>
(
output
->
dims
());
SequenceSoftmax
(
input
,
&
output_cmp
);
const
float
*
output_data
=
output
->
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
float
gap
=
output_data
[
i
]
-
output_cmp_data
[
i
];
if
(
std
::
abs
(
gap
/
(
output_data
[
i
]
+
1e-5
))
>
1e-3
)
{
LOG
(
kLOG_INFO
)
<<
"output_data["
<<
i
<<
"] = "
<<
output_data
[
i
]
<<
", output_cmp_data["
<<
i
<<
"] = "
<<
output_cmp_data
[
i
];
delete
op
;
exit
(
1
);
}
}
delete
op
;
return
0
;
}
}
// namespace paddle_mobile
int
main
(
int
argc
,
char
*
argv
[])
{
TestSequenceSoftmaxOp
({
2
,
1
},
{
0
,
2
});
TestSequenceSoftmaxOp
({
100
,
1
},
{
0
,
3
,
100
});
TestSequenceSoftmaxOp
({
100
,
1
},
{
0
,
50
,
100
});
return
0
;
}
test/operators/test_sigmoid_op.cpp
浏览文件 @
56ed27dd
...
...
@@ -12,10 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../../src/operators/kernel/central-arm-func/sigmoid_arm_func.h"
#include "../../src/operators/kernel/sigmoid_kernel.h"
#include "../test_helper.h"
#include "framework/executor.h"
int
main
()
{
paddle_mobile
::
framework
::
Tensor
input
;
...
...
@@ -25,11 +22,5 @@ int main() {
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
4
,
60
,
60
});
output
.
Resize
(
out_ddim
);
paddle_mobile
::
operators
::
sigmoid
(
&
input
,
&
output
);
auto
*
output_ptr
=
output
.
data
<
float
>
();
for
(
int
j
=
0
;
j
<
output
.
numel
();
++
j
)
{
DLOG
<<
" value of output: "
<<
output_ptr
[
j
];
}
DLOG
<<
5
;
return
0
;
}
test/operators/test_softmax_op.cpp
浏览文件 @
56ed27dd
...
...
@@ -62,7 +62,6 @@ int TestSoftmaxOp(const std::vector<int> input_shape) {
SetupTensor
<
float
>
(
input
,
dims
,
-
100.0
,
100.0
);
auto
output_var
=
scope
.
get
()
->
Var
(
"output"
);
auto
output
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
framework
::
AttributeMap
attrs
;
auto
*
op
=
new
operators
::
SoftmaxOp
<
CPU
,
float
>
(
"softmax"
,
inputs
,
outputs
,
...
...
@@ -71,6 +70,8 @@ int TestSoftmaxOp(const std::vector<int> input_shape) {
op
->
Init
();
op
->
Run
();
auto
output
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
framework
::
Tensor
output_cmp
;
float
*
output_cmp_data
=
output_cmp
.
mutable_data
<
float
>
(
output
->
dims
());
Softmax
(
input
,
&
output_cmp
);
...
...
tools/op.cmake
浏览文件 @
56ed27dd
...
...
@@ -272,6 +272,9 @@ if(NOT FOUND_MATCH)
set
(
FUSION_DEQUANT_ADD_BN_RELU_OP ON
)
set
(
FUSION_DEQUANT_ADD_BN_QUANT_OP ON
)
set
(
FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP ON
)
set
(
SEQUENCE_EXPAND_OP ON
)
set
(
SEQUENCE_POOL_OP ON
)
set
(
SEQUENCE_SOFTMAX_OP ON
)
endif
()
# option(BATCHNORM_OP "" ON)
...
...
@@ -496,6 +499,15 @@ endif()
if
(
FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP
)
# add_definitions(-DFUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
endif
()
if
(
SEQUENCE_EXPAND_OP
)
add_definitions
(
-DSEQUENCE_EXPAND_OP
)
endif
()
if
(
SEQUENCE_POOL_OP
)
add_definitions
(
-DSEQUENCE_POOL_OP
)
endif
()
if
(
SEQUENCE_SOFTMAX_OP
)
add_definitions
(
-DSEQUENCE_SOFTMAX_OP
)
endif
()
if
(
TANH_OP
)
add_definitions
(
-DTANH_OP
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录