提交 549f3592 编写于 作者: C cc 提交者: GitHub

Add library and opt requirement for post_quant_without_dat, test=develop, test=document_fix (#3140)

上级 535e7c57
......@@ -75,7 +75,11 @@ WeightQuantization.quantize_weight_to_int(save_model_dir,
## 3 量化模型预测
首先,使用PaddleLite提供的模型转换工具(model_optimize_tool)将量化模型转换成移动端预测的模型,然后加载转换后的模型进行预测部署。
目前,对于无校准数据训练后量化产出的量化模型,不支持PaddlePaddle加载执行,只能使用PaddleLite进行预测部署。
很简单,首先使用PaddleLite提供的模型转换工具(opt)将量化模型转换成移动端预测的模型,然后加载转换后的模型进行预测部署。
注意,PaddleLite 2.3版本才支持无校准数据训练后量化产出的量化,所以转换工具和预测库必须是2.3及之后的版本。
### 3.1 模型转换
......
......@@ -41,7 +41,7 @@
### 2.3 配置校准数据生成器
有校准数据训练后量化内部使用异步数据读取的方式读取校准数据,大家只需要根据模型的输入,配置读取数据的sample_generator。sample_generator是Python生成器,**必须每次返回单个样本数据**,会用作`DataLoader.set_sample_generator()`的数据源。
建议参考[异步数据读取文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/user_guides/howto/prepare_data/use_py_reader.html)和本文示例,学习如何配置校准数据生成器。
建议参考[异步数据读取文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/data_preparing/use_py_reader.html)和本文示例,学习如何配置校准数据生成器。
### 2.4 调用有校准数据训练后量化
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册