Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
5209b4b6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5209b4b6
编写于
1月 14, 2020
作者:
Z
zhupengyang
提交者:
GitHub
1月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] enhance concat, nearest_interp, bilinear_interp ut (#2764)
- enhance interp InferShape
上级
c4a87224
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
515 addition
and
1225 deletion
+515
-1225
lite/kernels/npu/bridges/concat_op_test.cc
lite/kernels/npu/bridges/concat_op_test.cc
+0
-130
lite/kernels/npu/bridges/interpolate_op.cc
lite/kernels/npu/bridges/interpolate_op.cc
+14
-8
lite/kernels/npu/bridges/interpolate_op_test.cc
lite/kernels/npu/bridges/interpolate_op_test.cc
+0
-407
lite/operators/interpolate_op.cc
lite/operators/interpolate_op.cc
+25
-25
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+2
-3
lite/tests/kernels/bilinear_interp_compute_test.cc
lite/tests/kernels/bilinear_interp_compute_test.cc
+0
-374
lite/tests/kernels/concat_compute_test.cc
lite/tests/kernels/concat_compute_test.cc
+12
-18
lite/tests/kernels/interp_compute_test.cc
lite/tests/kernels/interp_compute_test.cc
+462
-0
lite/tests/kernels/nearest_interp_compute_test.cc
lite/tests/kernels/nearest_interp_compute_test.cc
+0
-260
未找到文件。
lite/kernels/npu/bridges/concat_op_test.cc
已删除
100644 → 0
浏览文件 @
c4a87224
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/concat_op.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
npu
{
namespace
bridges
{
std
::
vector
<
size_t
>
stride_numel
(
const
DDim
&
ddim
)
{
std
::
vector
<
size_t
>
strides
(
ddim
.
size
());
strides
[
ddim
.
size
()
-
1
]
=
ddim
[
ddim
.
size
()
-
1
];
for
(
int
i
=
ddim
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
ddim
[
i
];
}
return
strides
;
}
void
concat_ref
(
const
std
::
shared_ptr
<
operators
::
ConcatOpLite
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
op_info
->
Input
(
"X"
);
std
::
vector
<
lite
::
Tensor
*>
inputs
;
for
(
auto
var
:
x
)
{
inputs
.
push_back
(
scope
->
FindVar
(
var
)
->
GetMutable
<
lite
::
Tensor
>
());
}
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
int
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
std
::
vector
<
lite
::
Tensor
*>
inputs_concat
(
inputs
.
size
());
for
(
int
j
=
0
;
j
<
inputs
.
size
();
++
j
)
{
inputs_concat
[
j
]
=
inputs
[
j
];
}
size_t
num
=
inputs
.
size
();
int
rows
=
1
;
auto
dim_0
=
inputs
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
inputs_cols
(
inputs
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
inputs
[
i
]
->
numel
()
/
rows
;
out_cols
+=
t_cols
;
inputs_cols
[
i
]
=
t_cols
;
}
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
float
*
dst_ptr
=
out
->
mutable_data
<
float
>
()
+
k
*
out_cols
;
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
inputs_cols
[
j
];
const
float
*
src_prt
=
inputs
[
j
]
->
data
<
float
>
()
+
k
*
col_len
;
std
::
memcpy
(
dst_ptr
+
col_idx
,
src_prt
,
sizeof
(
float
)
*
col_len
);
col_idx
+=
col_len
;
}
}
}
void
test_concat
(
std
::
vector
<
vector
<
int64_t
>>
input
,
int
axis
)
{
std
::
string
x_var_name
=
"x"
;
std
::
string
y_var_name
=
"y"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
// prepare input&output variables
Scope
scope
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
y
=
scope
.
Var
(
y_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
DDim
(
input
[
0
]));
y
->
Resize
(
DDim
(
input
[
1
]));
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
CHECK_EQ
(
out
->
dims
(),
out_ref
->
dims
());
// initialize input&output data
FillTensor
<
float
>
(
x
);
FillTensor
<
float
>
(
y
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"concat"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
,
y_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"axis"
,
axis
);
auto
op
=
CreateOp
<
operators
::
ConcatOpLite
>
(
opdesc
,
&
scope
);
LauchOp
(
op
,
{
x_var_name
,
y_var_name
},
{
out_var_name
});
out_ref
->
CopyDataFrom
(
*
out
);
concat_ref
(
op
);
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
5e-4
);
}
}
TEST
(
NPUBridges
,
concat
)
{
test_concat
({{
3
,
3
,
5
,
2
},
{
2
,
3
,
5
,
2
}},
0
);
test_concat
({{
3
,
5
,
5
,
2
},
{
3
,
1
,
5
,
2
}},
1
);
test_concat
({{
3
,
3
,
2
,
2
},
{
3
,
3
,
4
,
2
}},
2
);
test_concat
({{
3
,
3
,
5
,
2
},
{
3
,
3
,
5
,
6
}},
3
);
}
}
// namespace bridges
}
// namespace npu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
concat
);
USE_NPU_BRIDGE
(
concat
);
lite/kernels/npu/bridges/interpolate_op.cc
浏览文件 @
5209b4b6
...
...
@@ -48,11 +48,15 @@ int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
out_w
=
op_info
->
GetAttr
<
int
>
(
"out_w"
);
auto
out_h
=
op_info
->
GetAttr
<
int
>
(
"out_h"
);
auto
align_corners
=
op_info
->
GetAttr
<
bool
>
(
"align_corners"
);
int
align_mode
=
op_info
->
GetAttr
<
int
>
(
"align_mode"
);
int
align_mode
=
op_info
->
HasAttr
(
"align_mode"
)
?
op_info
->
GetAttr
<
int
>
(
"align_mode"
)
:
1
;
auto
interp_method
=
op_info
->
GetAttr
<
std
::
string
>
(
"interp_method"
);
CHECK
(
!
(
align_mode
==
0
&&
!
align_corners
))
<<
"[NPU] align_mode = 0 && "
"align_corners = false isn't "
"supported in HiAI DDK"
;
if
(
align_mode
==
0
&&
!
align_corners
)
{
LOG
(
WARNING
)
<<
"[NPU] align_mode = 0 && "
"align_corners = false isn't "
"supported in HiAI DDK"
;
return
FAILED
;
}
// X node
std
::
shared_ptr
<
Node
>
x_node
=
nullptr
;
...
...
@@ -93,10 +97,12 @@ int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
interp_method
==
"bilinear"
)
{
const
float
largest_multiple
=
7.0
f
;
float
multiple
=
static_cast
<
float
>
(
x_h
*
x_w
)
/
(
out_h
*
out_w
);
CHECK_LT
(
multiple
,
largest_multiple
)
<<
"[NPU] multiple=(ih*iw)/(oh*ow)="
<<
multiple
<<
" is too large, should not exceed "
<<
largest_multiple
<<
" in HiAI DDK"
;
if
(
multiple
>=
largest_multiple
)
{
LOG
(
WARNING
)
<<
"[NPU] multiple=(ih*iw)/(oh*ow)="
<<
multiple
<<
" is too large, should not exceed "
<<
largest_multiple
<<
" in HiAI DDK"
;
return
FAILED
;
}
}
out_size_node
=
graph
->
Add
(
out_name
+
"/out_size"
,
std
::
vector
<
int
>
({
out_h
,
out_w
}));
...
...
lite/kernels/npu/bridges/interpolate_op_test.cc
已删除
100644 → 0
浏览文件 @
c4a87224
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/interpolate_op.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
npu
{
namespace
bridges
{
template
<
typename
DType
>
void
bilinear_interp_ref
(
const
std
::
shared_ptr
<
operators
::
InterpolateOp
>
op
)
{
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
();
int
batch_size
=
x_dims
[
0
];
int
channel_size
=
x_dims
[
1
];
auto
x_h
=
x_dims
[
2
];
auto
x_w
=
x_dims
[
3
];
CHECK_EQ
(
x_dims
.
size
(),
4
);
auto
scale
=
op_info
->
GetAttr
<
float
>
(
"scale"
);
auto
out_w
=
op_info
->
GetAttr
<
int
>
(
"out_w"
);
auto
out_h
=
op_info
->
GetAttr
<
int
>
(
"out_h"
);
auto
align_corners
=
op_info
->
GetAttr
<
bool
>
(
"align_corners"
);
int
align_mode
=
op_info
->
GetAttr
<
int
>
(
"align_mode"
);
auto
interp_method
=
op_info
->
GetAttr
<
std
::
string
>
(
"interp_method"
);
// calc real out_h and out_w
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
x_h
*
scale
);
out_w
=
static_cast
<
int
>
(
x_w
*
scale
);
}
if
(
op_info
->
HasInput
(
"OutSize"
))
{
auto
out_size_var_names
=
op_info
->
Input
(
"OutSize"
);
if
(
out_size_var_names
.
size
()
>
0
)
{
auto
out_size_var_name
=
out_size_var_names
.
front
();
auto
out_size
=
scope
->
FindVar
(
out_size_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
out_size_dims
=
out_size
->
dims
();
CHECK_EQ
(
out_size_dims
.
size
(),
1
);
CHECK_EQ
(
out_size_dims
.
production
(),
2
);
auto
out_size_data
=
out_size
->
mutable_data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
}
CHECK_GT
(
out_h
,
0
);
CHECK_GT
(
out_w
,
0
);
out
->
Resize
({
batch_size
,
channel_size
,
out_h
,
out_w
});
// copy from x if no change
if
(
x_h
==
out_h
&&
x_w
==
out_w
)
{
out
->
CopyDataFrom
(
*
x
);
return
;
}
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
(
align_corners
)
?
static_cast
<
float
>
(
x_h
-
1
)
/
(
out_h
-
1
)
:
static_cast
<
float
>
(
x_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
(
align_corners
)
?
static_cast
<
float
>
(
x_w
-
1
)
/
(
out_w
-
1
)
:
static_cast
<
float
>
(
x_w
)
/
out_w
;
}
// naive bilinear interpolation
auto
x_data
=
x
->
mutable_data
<
DType
>
();
auto
out_data
=
out
->
mutable_data
<
DType
>
();
bool
align_flag
=
(
align_mode
==
0
&&
!
align_corners
);
std
::
vector
<
int
>
vy_n
,
vy_s
;
std
::
vector
<
float
>
vd_n
,
vd_s
;
vy_n
.
reserve
(
out_h
);
vy_s
.
reserve
(
out_h
);
vd_n
.
reserve
(
out_h
);
vd_s
.
reserve
(
out_h
);
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
int
yn
=
align_flag
?
static_cast
<
int
>
(
ratio_h
*
(
k
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_h
*
k
);
yn
=
(
yn
>
0
)
?
yn
:
0
;
int
ys
=
(
yn
+
1
)
<
(
x_h
-
1
)
?
(
yn
+
1
)
:
(
x_h
-
1
);
float
idx_src_y
=
ratio_h
*
(
k
+
0.5
)
-
0.5
;
idx_src_y
=
(
idx_src_y
>
0
)
?
idx_src_y
:
0
;
float
dn
=
align_flag
?
idx_src_y
-
yn
:
ratio_h
*
k
-
yn
;
float
ds
=
1.
f
-
dn
;
{
vy_n
[
k
]
=
yn
;
vy_s
[
k
]
=
ys
;
vd_n
[
k
]
=
dn
;
vd_s
[
k
]
=
ds
;
}
}
std
::
vector
<
int
>
vx_w
,
vx_e
;
std
::
vector
<
float
>
vd_w
,
vd_e
;
vx_w
.
reserve
(
out_w
);
vx_e
.
reserve
(
out_w
);
vd_w
.
reserve
(
out_w
);
vd_e
.
reserve
(
out_w
);
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
int
xw
=
(
align_mode
==
0
&&
!
align_corners
)
?
static_cast
<
int
>
(
ratio_w
*
(
l
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_w
*
l
);
xw
=
(
xw
>
0
)
?
xw
:
0
;
int
xe
=
(
xw
+
1
)
<
(
x_w
-
1
)
?
(
xw
+
1
)
:
(
x_w
-
1
);
float
idx_src_x
=
ratio_w
*
(
l
+
0.5
)
-
0.5
;
idx_src_x
=
(
idx_src_x
>
0
)
?
idx_src_x
:
0
;
float
dw
=
align_flag
?
idx_src_x
-
xw
:
ratio_w
*
l
-
xw
;
float
de
=
1.
f
-
dw
;
{
vx_w
[
l
]
=
xw
;
vx_e
[
l
]
=
xe
;
vd_w
[
l
]
=
dw
;
vd_e
[
l
]
=
de
;
}
}
std
::
vector
<
int64_t
>
x_strides
(
x_dims
.
size
(),
1
);
for
(
int
idx
=
x_strides
.
size
()
-
2
;
idx
>=
0
;
idx
--
)
{
x_strides
[
idx
]
=
x_strides
[
idx
+
1
]
*
x_dims
[
idx
+
1
];
}
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
j
=
0
;
j
<
channel_size
;
j
++
)
{
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
DType
x0
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_n
[
k
]
*
x_strides
[
2
]
+
vx_w
[
l
]
*
x_strides
[
3
]];
DType
x1
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_s
[
k
]
*
x_strides
[
2
]
+
vx_w
[
l
]
*
x_strides
[
3
]];
DType
x2
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_n
[
k
]
*
x_strides
[
2
]
+
vx_e
[
l
]
*
x_strides
[
3
]];
DType
x3
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_s
[
k
]
*
x_strides
[
2
]
+
vx_e
[
l
]
*
x_strides
[
3
]];
*
out_data
=
x0
*
vd_s
[
k
]
*
vd_e
[
l
]
+
x1
*
vd_n
[
k
]
*
vd_e
[
l
]
+
x2
*
vd_s
[
k
]
*
vd_w
[
l
]
+
x3
*
vd_n
[
k
]
*
vd_w
[
l
];
out_data
++
;
}
}
}
}
}
template
<
typename
DType
>
void
nearest_interp_ref
(
const
std
::
shared_ptr
<
operators
::
InterpolateOp
>
op
)
{
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
();
CHECK_EQ
(
x_dims
.
size
(),
4
);
auto
scale
=
op_info
->
GetAttr
<
float
>
(
"scale"
);
auto
out_w
=
op_info
->
GetAttr
<
int
>
(
"out_w"
);
auto
out_h
=
op_info
->
GetAttr
<
int
>
(
"out_h"
);
auto
align_corners
=
op_info
->
GetAttr
<
bool
>
(
"align_corners"
);
// int align_mode = op_info->GetAttr<int>("align_mode");
auto
interp_method
=
op_info
->
GetAttr
<
std
::
string
>
(
"interp_method"
);
CHECK_EQ
(
interp_method
,
"nearest"
);
int
x_h
=
x_dims
[
2
];
int
x_w
=
x_dims
[
3
];
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
x_h
*
scale
);
out_w
=
static_cast
<
int
>
(
x_w
*
scale
);
}
if
(
op_info
->
HasInput
(
"OutSize"
))
{
auto
out_size_var_names
=
op_info
->
Input
(
"OutSize"
);
if
(
out_size_var_names
.
size
()
>
0
)
{
auto
out_size_var_name
=
out_size_var_names
.
front
();
auto
out_size
=
scope
->
FindVar
(
out_size_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
CHECK_EQ
(
out_size
->
numel
(),
2
);
auto
out_size_data
=
out_size
->
mutable_data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
}
CHECK_GT
(
out_h
,
0
);
CHECK_GT
(
out_w
,
0
);
out
->
Resize
({
x_dims
[
0
],
x_dims
[
1
],
out_h
,
out_w
});
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
align_corners
?
static_cast
<
float
>
(
x_h
-
1.0
)
/
(
out_h
-
1.0
)
:
static_cast
<
float
>
(
x_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
align_corners
?
static_cast
<
float
>
(
x_w
-
1.0
)
/
(
out_w
-
1.0
)
:
static_cast
<
float
>
(
x_w
)
/
out_w
;
}
auto
x_data
=
x
->
data
<
DType
>
();
auto
out_data
=
out
->
mutable_data
<
DType
>
();
auto
out_dims
=
out
->
dims
();
std
::
vector
<
int64_t
>
x_strides
(
x_dims
.
size
(),
1
);
for
(
int
idx
=
x_strides
.
size
()
-
2
;
idx
>=
0
;
idx
--
)
{
x_strides
[
idx
]
=
x_strides
[
idx
+
1
]
*
x_dims
[
idx
+
1
];
}
for
(
int
n
=
0
;
n
<
out_dims
[
0
];
n
++
)
{
for
(
int
c
=
0
;
c
<
out_dims
[
1
];
c
++
)
{
for
(
int
h
=
0
;
h
<
out_dims
[
2
];
h
++
)
{
for
(
int
w
=
0
;
w
<
out_dims
[
3
];
w
++
)
{
int
in_i
=
ratio_h
*
h
;
int
in_j
=
ratio_w
*
w
;
if
(
align_corners
)
{
in_i
=
ratio_h
*
h
+
0.5
;
in_j
=
ratio_w
*
w
+
0.5
;
}
*
out_data
=
x_data
[
n
*
x_strides
[
0
]
+
c
*
x_strides
[
1
]
+
in_i
*
x_strides
[
2
]
+
in_j
*
x_strides
[
3
]];
out_data
++
;
}
}
}
}
}
void
test_interpolate
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
int
oh
,
int
ow
,
float
scale
,
int
out_size_h
,
int
out_size_w
,
bool
align_corners
,
int
align_mode
,
std
::
string
interp_method
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_size_var_name
(
"out_size"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
out_ref_var_name
(
"out_ref"
);
auto
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
out_size
=
scope
.
Var
(
out_size_var_name
)
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
out_size
->
Resize
({
2
});
// initialize input&output data
FillTensor
<
float
,
int
>
(
x
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
interp_method
+
"_interp"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"out_h"
,
oh
);
opdesc
.
SetAttr
(
"out_w"
,
ow
);
opdesc
.
SetAttr
(
"scale"
,
scale
);
opdesc
.
SetAttr
(
"align_corners"
,
static_cast
<
bool
>
(
align_corners
));
opdesc
.
SetAttr
(
"align_mode"
,
static_cast
<
int
>
(
align_mode
));
opdesc
.
SetAttr
(
"interp_method"
,
interp_method
);
if
(
out_size_h
>
0
&&
out_size_w
>
0
)
{
auto
out_size_dims
=
out_size
->
dims
();
CHECK_EQ
(
out_size_dims
.
size
(),
1
);
CHECK_EQ
(
out_size_dims
.
production
(),
2
);
auto
out_size_data
=
out_size
->
mutable_data
<
int
>
();
out_size_data
[
0
]
=
out_size_h
;
out_size_data
[
1
]
=
out_size_w
;
opdesc
.
SetInput
(
"OutSize"
,
{
out_size_var_name
});
}
// create op and execute reference implementation
auto
op
=
CreateOp
<
operators
::
InterpolateOp
>
(
opdesc
,
&
scope
);
if
(
interp_method
==
"bilinear"
)
{
bilinear_interp_ref
<
float
>
(
op
);
}
else
{
nearest_interp_ref
<
float
>
(
op
);
}
out_ref
->
CopyDataFrom
(
*
out
);
// convert op to NPU model, then run it on NPU
LauchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
// compare results
auto
out_dims
=
out
->
dims
();
auto
out_ref_dims
=
out_ref
->
dims
();
CHECK_EQ
(
out_dims
.
size
(),
out_ref_dims
.
size
());
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
i
++
)
{
CHECK_EQ
(
out_dims
[
i
],
out_ref_dims
[
i
]);
}
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-2
f
);
}
}
TEST
(
NPUBridges
,
bilinear_interp
)
{
#if 1
for
(
auto
bs
:
{
1
,
3
})
{
for
(
auto
ic
:
{
3
,
4
})
{
for
(
auto
ih
:
{
4
,
5
})
{
for
(
auto
iw
:
{
3
,
6
})
{
for
(
auto
oh
:
{
0
,
3
,
8
})
{
for
(
auto
ow
:
{
0
,
4
,
9
})
{
for
(
auto
scale
:
{
0.
f
,
0.5
f
,
0.6
f
,
2.0
f
,
2.2
f
})
{
for
(
auto
out_size_h
:
{
0
,
3
,
11
})
{
for
(
auto
out_size_w
:
{
0
,
2
,
12
})
{
for
(
auto
align_corners
:
{
true
,
false
})
{
for
(
auto
align_mode
:
{
0
,
1
})
{
for
(
auto
interp_method
:
{
"bilinear"
,
"nearest"
})
{
int
act_oh
=
0
,
act_ow
=
0
;
if
(
out_size_h
>
0
&&
out_size_w
>
0
)
{
act_oh
=
out_size_h
;
act_ow
=
out_size_w
;
}
else
if
(
scale
>
1e-5
)
{
act_oh
=
static_cast
<
int
>
(
ih
*
scale
);
act_ow
=
static_cast
<
int
>
(
iw
*
scale
);
}
else
if
(
oh
>
0
&&
ow
>
0
)
{
act_oh
=
oh
;
act_ow
=
ow
;
}
if
(
act_oh
<=
0
||
act_ow
<=
0
)
{
continue
;
}
// TODO(hong19860320) multiple=(ih*iw)/(oh*ow)
// should
// not exceed 7.0 in NPU DDK, delete the following
// lines
// if the limination is removed.
const
float
largest_multiple
=
7.0
f
;
float
multiple
=
static_cast
<
float
>
(
ih
*
iw
)
/
(
act_oh
*
act_ow
);
if
(
multiple
>
largest_multiple
)
{
continue
;
}
if
(
align_mode
==
0
&&
!
align_corners
)
{
continue
;
}
VLOG
(
3
)
<<
"bs: "
<<
bs
<<
" ic: "
<<
ic
<<
" ih: "
<<
ih
<<
" iw: "
<<
iw
<<
" oh: "
<<
oh
<<
" ow: "
<<
ow
<<
" scale: "
<<
scale
<<
" out_size: "
<<
out_size_h
<<
","
<<
out_size_w
<<
" align_corners: "
<<
align_corners
<<
" align_mode: "
<<
align_mode
;
test_interpolate
(
bs
,
ic
,
ih
,
iw
,
oh
,
ow
,
scale
,
out_size_h
,
out_size_w
,
align_corners
,
align_mode
,
interp_method
);
}
}
}
}
}
}
}
}
}
}
}
}
#else
test_interpolate
(
1
,
1
,
4
,
3
,
0
,
0
,
1.
f
,
3
,
6
,
false
,
1
,
"nearest"
);
#endif
}
}
// namespace bridges
}
// namespace npu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
bilinear_interp
);
USE_NPU_BRIDGE
(
bilinear_interp
);
USE_LITE_OP
(
nearest_interp
);
USE_NPU_BRIDGE
(
nearest_interp
);
lite/operators/interpolate_op.cc
浏览文件 @
5209b4b6
...
...
@@ -35,8 +35,7 @@ bool InterpolateOp::CheckShape() const {
}
bool
InterpolateOp
::
InferShape
()
const
{
auto
*
X
=
param_
.
X
;
auto
*
OutSize
=
param_
.
OutSize
;
auto
X
=
param_
.
X
;
int
n
=
X
->
dims
()[
0
];
int
c
=
X
->
dims
()[
1
];
...
...
@@ -46,39 +45,40 @@ bool InterpolateOp::InferShape() const {
int
out_w
;
auto
SizeTensor
=
param_
.
SizeTensor
;
auto
OutSize
=
param_
.
OutSize
;
auto
Scale
=
param_
.
Scale
;
if
(
!
SizeTensor
.
empty
())
{
CHECK
(
SizeTensor
.
size
()
==
2
)
CHECK
_EQ
(
SizeTensor
.
size
(),
2
)
<<
"Input(SizeTensor)'size of Op(interpolate) must be 2. "
"Attr(out_shape)'s length must be 2 for 4-D input tensor."
;
out_h
=
SizeTensor
[
0
]
->
data
<
int
>
()[
0
];
out_w
=
SizeTensor
[
1
]
->
data
<
int
>
()[
0
];
}
else
if
(
OutSize
)
{
auto
OutSize_dims
=
OutSize
->
dims
();
CHECK_EQ
(
OutSize_dims
.
size
(),
1
)
<<
"Input(OutSize)'s dims size must be 1"
;
CHECK_EQ
(
OutSize_dims
[
0
],
2
)
<<
"OutSize's dim[0] must be 2"
;
auto
OutSize_data
=
OutSize
->
data
<
int
>
();
out_h
=
OutSize_data
[
0
];
out_w
=
OutSize_data
[
1
];
}
else
if
(
param_
.
out_h
>
0
&&
param_
.
out_w
>
0
)
{
out_h
=
param_
.
out_h
;
out_w
=
param_
.
out_w
;
param_
.
Out
->
Resize
({
n
,
c
,
out_h
,
out_w
});
return
true
;
}
auto
Scale
=
param_
.
Scale
;
if
(
Scale
)
{
auto
scale_dims
=
Scale
->
dims
();
CHECK
(
scale_dims
.
size
()
==
1
)
<<
"Scale's dimension size must be 1."
;
out_h
=
-
1
;
out_w
=
-
1
;
}
else
{
auto
scale
=
param_
.
scale
;
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
h
*
scale
);
out_w
=
static_cast
<
int
>
(
w
*
scale
);
out_h
=
out_h
>
0
?
out_h
:
-
1
;
out_w
=
out_w
>
0
?
out_w
:
-
1
;
float
scale
=
-
1.
f
;
if
(
Scale
)
{
auto
Scale_dims
=
Scale
->
dims
();
CHECK_EQ
(
Scale_dims
.
size
(),
1
)
<<
"Scale's dimension size must be 1."
;
scale
=
Scale
->
data
<
float
>
()[
0
];
}
else
{
out_h
=
param_
.
out_h
;
out_w
=
param_
.
out_w
;
scale
=
param_
.
scale
;
}
CHECK
(
scale
>
0
)
<<
"scale must large than 0."
;
out_h
=
static_cast
<
int
>
(
h
*
scale
);
out_w
=
static_cast
<
int
>
(
w
*
scale
);
}
if
(
OutSize
!=
nullptr
)
{
auto
out_lod
=
param_
.
Out
->
mutable_lod
();
*
out_lod
=
param_
.
X
->
lod
();
}
auto
out_lod
=
param_
.
Out
->
mutable_lod
();
*
out_lod
=
param_
.
X
->
lod
();
param_
.
Out
->
Resize
({
n
,
c
,
out_h
,
out_w
});
return
true
;
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
5209b4b6
...
...
@@ -25,7 +25,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_BM) AND (LITE_
#lite_cc_test(test_kernel_increment_compute SRCS increment_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_
concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_
kernel_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
@@ -59,8 +59,7 @@ endif()
lite_cc_test
(
test_kernel_pad2d_compute SRCS pad2d_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_prior_box_compute SRCS prior_box_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_negative_compute SRCS negative_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_bilinear_interp_compute SRCS bilinear_interp_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_nearest_interp_compute SRCS nearest_interp_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_interp_compute SRCS interp_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_shape_compute SRCS shape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
bm_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_crop_compute SRCS crop_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
bm_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_sequence_expand_compute SRCS sequence_expand_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/bilinear_interp_compute_test.cc
已删除
100644 → 0
浏览文件 @
c4a87224
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/tensor.h"
namespace
paddle
{
namespace
lite
{
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
(
tensor
->
data
<
int32_t
>
())));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
();
lite
::
Tensor
cpu_starts_tensor
;
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
template
<
typename
dtype
>
void
resize_bilinear_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
lite
::
Tensor
*
output
)
{
int
hin
=
inputs
[
0
]
->
dims
()[
2
];
int
win
=
inputs
[
0
]
->
dims
()[
3
];
int
channels
=
inputs
[
0
]
->
dims
()[
1
];
int
num
=
inputs
[
0
]
->
dims
()[
0
];
int
hout
=
output
->
dims
()[
2
];
int
wout
=
output
->
dims
()[
3
];
dtype
scale_w
=
static_cast
<
dtype
>
(
win
-
1
)
/
(
wout
-
1
);
dtype
scale_h
=
static_cast
<
dtype
>
(
hin
-
1
)
/
(
hout
-
1
);
const
dtype
*
src
=
inputs
[
0
]
->
data
<
dtype
>
();
dtype
*
dst
=
output
->
mutable_data
<
dtype
>
();
int
dst_stride_w
=
1
;
int
dst_stride_h
=
wout
;
int
dst_stride_c
=
wout
*
hout
;
int
dst_stride_batch
=
wout
*
hout
*
channels
;
int
src_stride_w
=
1
;
int
src_stride_h
=
win
;
int
src_stride_c
=
win
*
hin
;
int
src_stride_batch
=
win
*
hin
*
channels
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
int
src_index
=
n
*
src_stride_batch
+
c
*
src_stride_c
;
for
(
int
h
=
0
;
h
<
hout
;
++
h
)
{
for
(
int
w
=
0
;
w
<
wout
;
++
w
)
{
dtype
fw
=
w
*
scale_w
;
dtype
fh
=
h
*
scale_h
;
int
w_start
=
static_cast
<
int
>
(
fw
);
int
w_id
=
w_start
<
win
-
1
?
1
:
0
;
int
w_end
=
static_cast
<
int
>
(
fw
+
w_id
);
int
h_start
=
static_cast
<
int
>
(
fh
);
int
h_id
=
h_start
<
hin
-
1
?
1
:
0
;
int
h_end
=
static_cast
<
int
>
(
fh
+
h_id
);
fw
-=
w_start
;
fh
-=
h_start
;
const
dtype
w00
=
(
1.0
-
fh
)
*
(
1.0
-
fw
);
const
dtype
w01
=
fw
*
(
1.0
-
fh
);
const
dtype
w10
=
fh
*
(
1.0
-
fw
);
const
dtype
w11
=
fw
*
fh
;
dtype
tl
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_start
*
src_stride_h
];
dtype
tr
=
src
[
src_index
+
w_end
*
src_stride_w
+
h_start
*
src_stride_h
];
dtype
bl
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_end
*
src_stride_h
];
dtype
br
=
src
[
src_index
+
w_end
*
src_stride_w
+
h_end
*
src_stride_h
];
int
dst_index
=
n
*
dst_stride_batch
+
c
*
dst_stride_c
+
h
*
dst_stride_h
+
w
*
dst_stride_w
;
dst
[
dst_index
]
=
static_cast
<
dtype
>
(
w00
*
tl
+
w01
*
tr
+
w10
*
bl
+
w11
*
br
);
}
}
}
}
}
template
<
typename
dtype
>
void
resize_bilinear_no_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
lite
::
Tensor
*
output
)
{
int
hin
=
inputs
[
0
]
->
dims
()[
2
];
int
win
=
inputs
[
0
]
->
dims
()[
3
];
int
channels
=
inputs
[
0
]
->
dims
()[
1
];
int
num
=
inputs
[
0
]
->
dims
()[
0
];
int
hout
=
output
->
dims
()[
2
];
int
wout
=
output
->
dims
()[
3
];
dtype
scale_w
=
static_cast
<
dtype
>
(
win
)
/
(
wout
);
dtype
scale_h
=
static_cast
<
dtype
>
(
hin
)
/
(
hout
);
const
dtype
*
src
=
inputs
[
0
]
->
data
<
dtype
>
();
dtype
*
dst
=
output
->
mutable_data
<
dtype
>
();
int
dst_stride_w
=
1
;
int
dst_stride_h
=
wout
;
int
dst_stride_c
=
wout
*
hout
;
int
dst_stride_batch
=
wout
*
hout
*
channels
;
int
src_stride_w
=
1
;
int
src_stride_h
=
win
;
int
src_stride_c
=
win
*
hin
;
int
src_stride_batch
=
win
*
hin
*
channels
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
int
src_index
=
n
*
src_stride_batch
+
c
*
src_stride_c
;
for
(
int
h
=
0
;
h
<
hout
;
++
h
)
{
for
(
int
w
=
0
;
w
<
wout
;
++
w
)
{
dtype
fw
=
scale_w
*
(
w
+
0.5
f
)
-
0.5
f
;
fw
=
(
fw
<
0
)
?
0
:
fw
;
dtype
fh
=
scale_h
*
(
h
+
0.5
f
)
-
0.5
f
;
fh
=
(
fh
<
0
)
?
0
:
fh
;
int
w_start
=
static_cast
<
int
>
(
fw
);
int
w_id
=
w_start
<
win
-
1
?
1
:
0
;
int
w_end
=
static_cast
<
int
>
(
fw
+
w_id
);
int
h_start
=
static_cast
<
int
>
(
fh
);
int
h_id
=
h_start
<
hin
-
1
?
1
:
0
;
int
h_end
=
static_cast
<
int
>
(
fh
+
h_id
);
fw
-=
w_start
;
fh
-=
h_start
;
const
dtype
w00
=
(
1.0
-
fh
)
*
(
1.0
-
fw
);
const
dtype
w01
=
fw
*
(
1.0
-
fh
);
const
dtype
w10
=
fh
*
(
1.0
-
fw
);
const
dtype
w11
=
fw
*
fh
;
dtype
tl
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_start
*
src_stride_h
];
dtype
tr
=
src
[
src_index
+
w_end
*
src_stride_w
+
h_start
*
src_stride_h
];
dtype
bl
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_end
*
src_stride_h
];
dtype
br
=
src
[
src_index
+
w_end
*
src_stride_w
+
h_end
*
src_stride_h
];
int
dst_index
=
n
*
dst_stride_batch
+
c
*
dst_stride_c
+
h
*
dst_stride_h
+
w
*
dst_stride_w
;
dst
[
dst_index
]
=
static_cast
<
dtype
>
(
w00
*
tl
+
w01
*
tr
+
w10
*
bl
+
w11
*
br
);
}
}
}
}
}
class
BilinearInterpComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
input0_
=
"X"
;
std
::
string
sizetensor0_
=
"SizeTensor0"
;
std
::
string
sizetensor1_
=
"SizeTensor1"
;
std
::
string
input_scale_
=
"Scale"
;
std
::
string
input1_
=
"OutSize"
;
std
::
string
output_
=
"Out"
;
float
height_scale_
=
0.
f
;
float
width_scale_
=
0.
f
;
int
out_height_
=
-
1
;
int
out_width_
=
-
1
;
int
outsize_height_
=
-
1
;
int
outsize_width_
=
-
1
;
bool
align_corners_
=
true
;
std
::
string
interp_method_
=
"Bilinear"
;
DDim
_dims0_
{{
1
,
1
,
16
,
16
}};
DDim
_dims1_
{{
2
}};
DDim
sizetensor_dims_
{{
1
}};
DDim
scale_dims_
{{
1
}};
public:
BilinearInterpComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
float
scale
,
int
out_height
,
int
out_width
,
int
outsize_height
,
int
outsize_width
,
bool
align_corners
,
std
::
string
interp_method
)
:
TestCase
(
place
,
alias
),
height_scale_
(
scale
),
width_scale_
(
scale
),
out_height_
(
out_height
),
out_width_
(
out_width
),
outsize_height_
(
outsize_height
),
outsize_width_
(
outsize_width
),
align_corners_
(
align_corners
),
interp_method_
(
interp_method
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
width_scale_
=
height_scale_
;
std
::
vector
<
const
lite
::
Tensor
*>
inputs
;
inputs
.
emplace_back
(
scope
->
FindTensor
(
input0_
));
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
inputs
.
emplace_back
(
scope
->
FindTensor
(
input1_
));
}
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
;
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
SizeTensor
.
emplace_back
(
scope
->
FindTensor
(
sizetensor0_
));
SizeTensor
.
emplace_back
(
scope
->
FindTensor
(
sizetensor1_
));
}
const
lite
::
Tensor
*
input_scale
=
scope
->
FindTensor
(
input_scale_
);
float
scale
=
height_scale_
;
int
in_h
=
inputs
[
0
]
->
dims
()[
2
];
int
in_w
=
inputs
[
0
]
->
dims
()[
3
];
if
(
SizeTensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
SizeTensor
);
out_height_
=
new_size
[
0
];
out_width_
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
input_scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_height_
=
static_cast
<
int
>
(
in_h
*
scale
);
out_width_
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
inputs
.
size
()
>
1
)
{
auto
out_size
=
inputs
[
1
];
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_height_
=
out_size_data
[
0
];
out_width_
=
out_size_data
[
1
];
}
}
height_scale_
=
scale
;
width_scale_
=
scale
;
if
(
out_width_
!=
-
1
&&
out_height_
!=
-
1
)
{
height_scale_
=
static_cast
<
float
>
(
out_height_
/
inputs
[
0
]
->
dims
()[
2
]);
width_scale_
=
static_cast
<
float
>
(
out_width_
/
inputs
[
0
]
->
dims
()[
3
]);
}
auto
*
outputs
=
scope
->
NewTensor
(
output_
);
CHECK
(
outputs
);
int
num_cout
=
inputs
[
0
]
->
dims
()[
0
];
int
c_cout
=
inputs
[
0
]
->
dims
()[
1
];
outputs
->
Resize
({
num_cout
,
c_cout
,
out_height_
,
out_width_
});
if
(
align_corners_
)
{
resize_bilinear_align
<
float
>
(
inputs
,
outputs
);
}
else
{
resize_bilinear_no_align
<
float
>
(
inputs
,
outputs
);
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"bilinear_interp"
);
op_desc
->
SetInput
(
"X"
,
{
input0_
});
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
op_desc
->
SetInput
(
"OutSize"
,
{
input1_
});
op_desc
->
SetInput
(
"SizeTensor"
,
{
sizetensor0_
,
sizetensor1_
});
}
if
(
height_scale_
>
0
)
{
op_desc
->
SetInput
(
"Scale"
,
{
input_scale_
});
}
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetAttr
(
"scale"
,
height_scale_
);
op_desc
->
SetAttr
(
"out_h"
,
out_height_
);
op_desc
->
SetAttr
(
"out_w"
,
out_width_
);
op_desc
->
SetAttr
(
"align_corners"
,
align_corners_
);
op_desc
->
SetAttr
(
"interp_method"
,
interp_method_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
data0
(
_dims0_
.
production
());
for
(
int
i
=
0
;
i
<
_dims0_
.
production
();
i
++
)
{
data0
[
i
]
=
i
*
1.1
;
}
SetCommonTensor
(
input0_
,
_dims0_
,
data0
.
data
());
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
std
::
vector
<
int
>
data1
(
2
);
data1
[
0
]
=
outsize_height_
;
data1
[
1
]
=
outsize_width_
;
SetCommonTensor
(
input1_
,
_dims1_
,
data1
.
data
());
std
::
vector
<
int
>
sizetensor_data
(
1
);
sizetensor_data
[
0
]
=
outsize_height_
;
SetCommonTensor
(
sizetensor0_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
sizetensor_data
[
0
]
=
outsize_width_
;
SetCommonTensor
(
sizetensor1_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
}
if
(
height_scale_
>
0
)
{
std
::
vector
<
float
>
scale_data
(
1
);
scale_data
[
0
]
=
height_scale_
;
SetCommonTensor
(
input_scale_
,
scale_dims_
,
scale_data
.
data
());
}
}
};
void
test_bilinear_interp
(
Place
place
)
{
std
::
string
interp_method
=
"Bilinear"
;
for
(
float
scale
:
{
2.
,
1.
,
0.3
})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
BilinearInterpComputeTester
(
place
,
"def"
,
scale
,
-
1
,
-
1
,
-
1
,
-
1
,
align_corners
,
interp_method
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
5e-5
);
arena
.
TestPrecision
();
}
}
for
(
int
out_height
:
{
8
,
16
,
24
})
{
for
(
int
out_width
:
{
8
,
16
,
24
})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
BilinearInterpComputeTester
(
place
,
"def"
,
0
,
out_height
,
out_width
,
-
1
,
-
1
,
align_corners
,
interp_method
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
5e-5
);
arena
.
TestPrecision
();
}
}
}
for
(
int
outsize_height
:
{
8
,
16
,
24
})
{
for
(
int
outsize_width
:
{
8
,
16
,
24
})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
BilinearInterpComputeTester
(
place
,
"def"
,
0
,
-
1
,
-
1
,
outsize_height
,
outsize_width
,
align_corners
,
interp_method
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
5e-5
);
arena
.
TestPrecision
();
}
}
}
}
TEST
(
BilinearInterp
,
precision
)
{
// #ifdef LITE_WITH_X86
// Place place(TARGET(kX86));
// #endif
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
test_bilinear_interp
(
place
);
#endif
}
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/concat_compute_test.cc
浏览文件 @
5209b4b6
...
...
@@ -142,35 +142,29 @@ class ConcateComputeTester : public arena::TestCase {
TEST
(
Concat
,
precision
)
{
LOG
(
INFO
)
<<
"test concat op, kARM"
;
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
for
(
int
axis
:
{
1
,
2
})
{
for
(
bool
is_use_axis_tensor
:
{
false
,
true
})
{
LOG
(
INFO
)
<<
"axis:"
<<
axis
<<
", is_use_axis_tensor:"
<<
is_use_axis_tensor
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ConcateComputeTester
(
place
,
"def"
,
axis
,
is_use_axis_tensor
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
}
}
Place
place
;
float
abs_error
=
2e-5
;
#if defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
abs_error
=
1e-2
;
// use fp16 in npu
#elif defined(LITE_WITH_ARM)
place
=
TARGET
(
kARM
);
#elif defined(LITE_WITH_X86)
place
=
TARGET
(
kX86
);
#else
return
;
#endif
#ifdef LITE_WITH_X86
Place
place
(
TARGET
(
kX86
));
LOG
(
INFO
)
<<
"test concate op, x86"
;
for
(
int
axis
:
{
1
,
2
})
{
for
(
bool
is_use_axis_tensor
:
{
false
,
true
})
{
LOG
(
INFO
)
<<
"axis:"
<<
axis
<<
", is_use_axis_tensor:"
<<
is_use_axis_tensor
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ConcateComputeTester
(
place
,
"def"
,
axis
,
is_use_axis_tensor
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
#endif
}
}
// namespace lite
...
...
lite/tests/kernels/interp_compute_test.cc
0 → 100644
浏览文件 @
5209b4b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/tensor.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
lite
{
template
<
typename
dtype
>
void
ResizeNearestAlign
(
const
lite
::
Tensor
*
x
,
lite
::
Tensor
*
out
,
bool
with_align
)
{
auto
x_dims
=
x
->
dims
();
int
num
=
x_dims
[
0
];
int
channels
=
x_dims
[
1
];
int
hin
=
x_dims
[
2
];
int
win
=
x_dims
[
3
];
int
hout
=
out
->
dims
()[
2
];
int
wout
=
out
->
dims
()[
3
];
dtype
scale_w
=
(
with_align
)
?
(
static_cast
<
float
>
(
win
-
1
)
/
(
wout
-
1
))
:
(
static_cast
<
float
>
(
win
)
/
(
wout
));
dtype
scale_h
=
(
with_align
)
?
(
static_cast
<
float
>
(
hin
-
1
)
/
(
hout
-
1
))
:
(
static_cast
<
float
>
(
hin
)
/
(
hout
));
const
dtype
*
src
=
x
->
data
<
dtype
>
();
dtype
*
dst
=
out
->
mutable_data
<
dtype
>
();
int
dst_stride_w
=
1
;
int
dst_stride_h
=
wout
;
int
dst_stride_c
=
wout
*
hout
;
int
dst_stride_batch
=
wout
*
hout
*
channels
;
int
src_stride_w
=
1
;
int
src_stride_h
=
win
;
int
src_stride_c
=
win
*
hin
;
int
src_stride_batch
=
win
*
hin
*
channels
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
int
src_index
=
n
*
src_stride_batch
+
c
*
src_stride_c
;
for
(
int
h
=
0
;
h
<
hout
;
++
h
)
{
for
(
int
w
=
0
;
w
<
wout
;
++
w
)
{
int
fw
=
(
with_align
)
?
static_cast
<
int
>
(
scale_w
*
w
+
0.5
)
:
static_cast
<
int
>
(
scale_w
*
w
);
fw
=
(
fw
<
0
)
?
0
:
fw
;
int
fh
=
(
with_align
)
?
static_cast
<
int
>
(
scale_h
*
h
+
0.5
)
:
static_cast
<
int
>
(
scale_h
*
h
);
fh
=
(
fh
<
0
)
?
0
:
fh
;
int
w_start
=
static_cast
<
int
>
(
fw
);
int
h_start
=
static_cast
<
int
>
(
fh
);
int
dst_index
=
n
*
dst_stride_batch
+
c
*
dst_stride_c
+
h
*
dst_stride_h
+
w
*
dst_stride_w
;
dst
[
dst_index
]
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_start
*
src_stride_h
];
}
}
}
}
}
template
<
typename
DType
>
void
BilinearInterpRef
(
const
lite
::
Tensor
*
x
,
lite
::
Tensor
*
out
,
bool
align_corners
,
int
align_mode
)
{
auto
x_dims
=
x
->
dims
();
int
batch_size
=
x_dims
[
0
];
int
channel_size
=
x_dims
[
1
];
auto
x_h
=
x_dims
[
2
];
auto
x_w
=
x_dims
[
3
];
CHECK_EQ
(
x_dims
.
size
(),
4
);
auto
out_dims
=
out
->
dims
();
int
out_h
=
out_dims
[
2
];
int
out_w
=
out_dims
[
3
];
// copy from x if no change
if
(
x_h
==
out_h
&&
x_w
==
out_w
)
{
out
->
CopyDataFrom
(
*
x
);
return
;
}
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
(
align_corners
)
?
static_cast
<
float
>
(
x_h
-
1
)
/
(
out_h
-
1
)
:
static_cast
<
float
>
(
x_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
(
align_corners
)
?
static_cast
<
float
>
(
x_w
-
1
)
/
(
out_w
-
1
)
:
static_cast
<
float
>
(
x_w
)
/
out_w
;
}
// naive bilinear interpolation
auto
x_data
=
x
->
data
<
DType
>
();
auto
out_data
=
out
->
mutable_data
<
DType
>
();
bool
align_flag
=
(
align_mode
==
0
&&
!
align_corners
);
std
::
vector
<
int
>
vy_n
,
vy_s
;
std
::
vector
<
float
>
vd_n
,
vd_s
;
vy_n
.
reserve
(
out_h
);
vy_s
.
reserve
(
out_h
);
vd_n
.
reserve
(
out_h
);
vd_s
.
reserve
(
out_h
);
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
int
yn
=
align_flag
?
static_cast
<
int
>
(
ratio_h
*
(
k
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_h
*
k
);
yn
=
(
yn
>
0
)
?
yn
:
0
;
int
ys
=
(
yn
+
1
)
<
(
x_h
-
1
)
?
(
yn
+
1
)
:
(
x_h
-
1
);
float
idx_src_y
=
ratio_h
*
(
k
+
0.5
)
-
0.5
;
idx_src_y
=
(
idx_src_y
>
0
)
?
idx_src_y
:
0
;
float
dn
=
align_flag
?
idx_src_y
-
yn
:
ratio_h
*
k
-
yn
;
float
ds
=
1.
f
-
dn
;
{
vy_n
[
k
]
=
yn
;
vy_s
[
k
]
=
ys
;
vd_n
[
k
]
=
dn
;
vd_s
[
k
]
=
ds
;
}
}
std
::
vector
<
int
>
vx_w
,
vx_e
;
std
::
vector
<
float
>
vd_w
,
vd_e
;
vx_w
.
reserve
(
out_w
);
vx_e
.
reserve
(
out_w
);
vd_w
.
reserve
(
out_w
);
vd_e
.
reserve
(
out_w
);
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
int
xw
=
align_flag
?
static_cast
<
int
>
(
ratio_w
*
(
l
+
0.5
)
-
0.5
)
:
static_cast
<
int
>
(
ratio_w
*
l
);
xw
=
(
xw
>
0
)
?
xw
:
0
;
int
xe
=
(
xw
+
1
)
<
(
x_w
-
1
)
?
(
xw
+
1
)
:
(
x_w
-
1
);
float
idx_src_x
=
ratio_w
*
(
l
+
0.5
)
-
0.5
;
idx_src_x
=
(
idx_src_x
>
0
)
?
idx_src_x
:
0
;
float
dw
=
align_flag
?
idx_src_x
-
xw
:
ratio_w
*
l
-
xw
;
float
de
=
1.
f
-
dw
;
{
vx_w
[
l
]
=
xw
;
vx_e
[
l
]
=
xe
;
vd_w
[
l
]
=
dw
;
vd_e
[
l
]
=
de
;
}
}
std
::
vector
<
int64_t
>
x_strides
(
x_dims
.
size
(),
1
);
for
(
int
idx
=
x_strides
.
size
()
-
2
;
idx
>=
0
;
idx
--
)
{
x_strides
[
idx
]
=
x_strides
[
idx
+
1
]
*
x_dims
[
idx
+
1
];
}
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
j
=
0
;
j
<
channel_size
;
j
++
)
{
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
DType
x0
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_n
[
k
]
*
x_strides
[
2
]
+
vx_w
[
l
]
*
x_strides
[
3
]];
DType
x1
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_s
[
k
]
*
x_strides
[
2
]
+
vx_w
[
l
]
*
x_strides
[
3
]];
DType
x2
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_n
[
k
]
*
x_strides
[
2
]
+
vx_e
[
l
]
*
x_strides
[
3
]];
DType
x3
=
x_data
[
i
*
x_strides
[
0
]
+
j
*
x_strides
[
1
]
+
vy_s
[
k
]
*
x_strides
[
2
]
+
vx_e
[
l
]
*
x_strides
[
3
]];
*
out_data
=
x0
*
vd_s
[
k
]
*
vd_e
[
l
]
+
x1
*
vd_n
[
k
]
*
vd_e
[
l
]
+
x2
*
vd_s
[
k
]
*
vd_w
[
l
]
+
x3
*
vd_n
[
k
]
*
vd_w
[
l
];
out_data
++
;
}
}
}
}
}
class
NearestInterpComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
x_
=
"X"
;
std
::
string
sizetensor0_
=
"SizeTensor0"
;
std
::
string
sizetensor1_
=
"SizeTensor1"
;
std
::
string
input_scale_
=
"Scale"
;
std
::
string
outsize_
=
"OutSize"
;
std
::
string
out_
=
"Out"
;
DDim
dims_
{{
1
,
2
,
3
,
4
}};
std
::
string
interp_method_
=
"nearest"
;
float
scale_
=
-
1.
f
;
int
out_h_
=
-
1
;
int
out_w_
=
-
1
;
bool
align_corners_
=
true
;
int
align_mode_
=
1
;
bool
use_sizetensor_
=
false
;
bool
use_input_scale_
=
false
;
bool
use_outsize_
=
false
;
public:
NearestInterpComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
dims
,
std
::
string
interp_method
=
"nearest"
,
float
scale
=
-
1.
f
,
int
out_h
=
-
1
,
int
out_w
=
-
1
,
bool
align_corners
=
true
,
int
align_mode
=
1
,
bool
use_sizetensor
=
false
,
bool
use_input_scale
=
false
,
bool
use_outsize
=
false
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
),
interp_method_
(
interp_method
),
scale_
(
scale
),
out_h_
(
out_h
),
out_w_
(
out_w
),
align_corners_
(
align_corners
),
align_mode_
(
align_mode
),
use_sizetensor_
(
use_sizetensor
),
use_input_scale_
(
use_input_scale
),
use_outsize_
(
use_outsize
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
int
out_h
=
out_h_
;
int
out_w
=
out_w_
;
if
(
scale_
>
0
)
{
out_h
=
dims_
[
2
]
*
scale_
;
out_w
=
dims_
[
3
]
*
scale_
;
}
auto
input
=
scope
->
FindTensor
(
x_
);
auto
output
=
scope
->
NewTensor
(
out_
);
std
::
vector
<
int64_t
>
out_shape
{
dims_
[
0
],
dims_
[
1
],
out_h
,
out_w
};
output
->
Resize
(
out_shape
);
if
(
interp_method_
==
"nearest"
)
{
ResizeNearestAlign
<
float
>
(
input
,
output
,
align_corners_
);
}
else
if
(
interp_method_
==
"bilinear"
)
{
BilinearInterpRef
<
float
>
(
input
,
output
,
align_corners_
,
align_mode_
);
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
if
(
interp_method_
==
"nearest"
)
{
op_desc
->
SetType
(
"nearest_interp"
);
}
else
if
(
interp_method_
==
"bilinear"
)
{
op_desc
->
SetType
(
"bilinear_interp"
);
}
else
{
LOG
(
FATAL
)
<<
"unsupport"
;
}
op_desc
->
SetInput
(
"X"
,
{
x_
});
if
(
use_sizetensor_
)
{
op_desc
->
SetInput
(
"SizeTensor"
,
{
sizetensor0_
,
sizetensor1_
});
}
if
(
use_input_scale_
)
{
op_desc
->
SetInput
(
"Scale"
,
{
input_scale_
});
}
if
(
use_outsize_
)
{
op_desc
->
SetInput
(
"OutSize"
,
{
outsize_
});
}
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
op_desc
->
SetAttr
(
"scale"
,
scale_
);
op_desc
->
SetAttr
(
"out_h"
,
out_h_
);
op_desc
->
SetAttr
(
"out_w"
,
out_w_
);
op_desc
->
SetAttr
(
"align_corners"
,
align_corners_
);
op_desc
->
SetAttr
(
"align_mode"
,
align_mode_
);
op_desc
->
SetAttr
(
"interp_method"
,
interp_method_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
din
(
dims_
.
production
());
fill_data_rand
(
din
.
data
(),
-
1.
f
,
1.
f
,
dims_
.
production
());
SetCommonTensor
(
x_
,
dims_
,
din
.
data
());
if
(
use_sizetensor_
)
{
DDim
sizetensor_dims
(
std
::
vector
<
int64_t
>
{
1
});
std
::
vector
<
int
>
dsizetensor0
{
out_h_
};
std
::
vector
<
int
>
dsizetensor1
{
out_w_
};
SetCommonTensor
(
sizetensor0_
,
sizetensor_dims
,
dsizetensor0
.
data
(),
{},
true
);
SetCommonTensor
(
sizetensor1_
,
sizetensor_dims
,
dsizetensor1
.
data
(),
{},
true
);
}
if
(
use_input_scale_
)
{
DDim
input_scale_dims
(
std
::
vector
<
int64_t
>
{
1
});
std
::
vector
<
float
>
dinput_scale
{
scale_
};
SetCommonTensor
(
input_scale_
,
input_scale_dims
,
dinput_scale
.
data
(),
{},
true
);
}
if
(
use_outsize_
)
{
DDim
outsize_dims
(
std
::
vector
<
int64_t
>
{
2
});
std
::
vector
<
int
>
doutsize
{
out_h_
,
out_w_
};
SetCommonTensor
(
outsize_
,
outsize_dims
,
doutsize
.
data
(),
{},
true
);
}
}
};
void
TestInterpOuthw
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
auto
interp_method
:
std
::
vector
<
std
::
string
>
{
"nearest"
,
"bilinear"
})
{
for
(
int
out_h
:
{
6
,
8
,
12
})
{
for
(
int
out_w
:
{
6
,
9
,
12
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
interp_method
,
-
1.
f
,
out_h
,
out_w
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
}
}
void
TestInterpScale
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
auto
interp_method
:
std
::
vector
<
std
::
string
>
{
"nearest"
,
"bilinear"
})
{
for
(
float
scale
:
{
0.3
f
,
1.
f
,
1.7
f
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
interp_method
,
scale
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
}
void
TestInterpSizetensor
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
auto
interp_method
:
std
::
vector
<
std
::
string
>
{
"nearest"
,
"bilinear"
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
interp_method
,
-
1.
f
,
10
,
12
,
true
,
1
,
true
,
false
,
false
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
void
TestInterpInputScale
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
auto
interp_method
:
std
::
vector
<
std
::
string
>
{
"nearest"
,
"bilinear"
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
interp_method
,
0.7
,
-
1
,
-
1
,
true
,
1
,
false
,
true
,
false
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
void
TestInterpOutsize
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
auto
interp_method
:
std
::
vector
<
std
::
string
>
{
"nearest"
,
"bilinear"
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
interp_method
,
-
1
,
4
,
4
,
true
,
1
,
false
,
false
,
true
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
void
TestInterpAlignCorners
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
"nearest"
,
0.4
,
-
1
,
-
1
,
align_corners
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
void
TestInterpAlignMode
(
Place
place
,
float
abs_error
=
2e-5
)
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
for
(
int
align_mode
:
{
0
,
1
})
{
// may exist bug in arm kernel
if
(
place
==
TARGET
(
kARM
)
&&
align_mode
==
1
&&
!
align_corners
)
{
continue
;
}
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
DDim
(
x_dims
),
"bilinear"
,
0.7
,
-
1
,
-
1
,
align_corners
,
align_mode
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
();
}
}
}
}
TEST
(
Interp
,
precision
)
{
Place
place
;
float
abs_error
=
2e-5
;
#if defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
abs_error
=
1e-2
;
// use fp16 in npu
#elif defined(LITE_WITH_ARM)
place
=
TARGET
(
kARM
);
#else
return
;
#endif
TestInterpOuthw
(
place
,
abs_error
);
TestInterpScale
(
place
,
abs_error
);
TestInterpSizetensor
(
place
,
abs_error
);
TestInterpInputScale
(
place
,
abs_error
);
TestInterpOutsize
(
place
,
abs_error
);
TestInterpAlignCorners
(
place
,
abs_error
);
TestInterpAlignMode
(
place
,
abs_error
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/nearest_interp_compute_test.cc
已删除
100644 → 0
浏览文件 @
c4a87224
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/tensor.h"
namespace
paddle
{
namespace
lite
{
inline
std
::
vector
<
int
>
get_new_shape
(
const
std
::
vector
<
const
lite
::
Tensor
*>&
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
();
lite
::
Tensor
cpu_starts_tensor
;
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
template
<
typename
dtype
>
void
resize_nearest_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
lite
::
Tensor
*
output
,
bool
with_align
)
{
int
hin
=
inputs
[
0
]
->
dims
()[
2
];
int
win
=
inputs
[
0
]
->
dims
()[
3
];
int
channels
=
inputs
[
0
]
->
dims
()[
1
];
int
num
=
inputs
[
0
]
->
dims
()[
0
];
int
hout
=
output
->
dims
()[
2
];
int
wout
=
output
->
dims
()[
3
];
dtype
scale_w
=
(
with_align
)
?
(
static_cast
<
float
>
(
win
-
1
)
/
(
wout
-
1
))
:
(
static_cast
<
float
>
(
win
)
/
(
wout
));
dtype
scale_h
=
(
with_align
)
?
(
static_cast
<
float
>
(
hin
-
1
)
/
(
hout
-
1
))
:
(
static_cast
<
float
>
(
hin
)
/
(
hout
));
const
dtype
*
src
=
inputs
[
0
]
->
data
<
dtype
>
();
dtype
*
dst
=
output
->
mutable_data
<
dtype
>
();
int
dst_stride_w
=
1
;
int
dst_stride_h
=
wout
;
int
dst_stride_c
=
wout
*
hout
;
int
dst_stride_batch
=
wout
*
hout
*
channels
;
int
src_stride_w
=
1
;
int
src_stride_h
=
win
;
int
src_stride_c
=
win
*
hin
;
int
src_stride_batch
=
win
*
hin
*
channels
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
int
src_index
=
n
*
src_stride_batch
+
c
*
src_stride_c
;
for
(
int
h
=
0
;
h
<
hout
;
++
h
)
{
for
(
int
w
=
0
;
w
<
wout
;
++
w
)
{
int
fw
=
(
with_align
)
?
static_cast
<
int
>
(
scale_w
*
w
+
0.5
)
:
static_cast
<
int
>
(
scale_w
*
w
);
fw
=
(
fw
<
0
)
?
0
:
fw
;
int
fh
=
(
with_align
)
?
static_cast
<
int
>
(
scale_h
*
h
+
0.5
)
:
static_cast
<
int
>
(
scale_h
*
h
);
fh
=
(
fh
<
0
)
?
0
:
fh
;
int
w_start
=
static_cast
<
int
>
(
fw
);
int
h_start
=
static_cast
<
int
>
(
fh
);
int
dst_index
=
n
*
dst_stride_batch
+
c
*
dst_stride_c
+
h
*
dst_stride_h
+
w
*
dst_stride_w
;
dst
[
dst_index
]
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_start
*
src_stride_h
];
}
}
}
}
}
class
NearestInterpComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
input0_
=
"X"
;
std
::
string
sizetensor0_
=
"SizeTensor0"
;
std
::
string
sizetensor1_
=
"SizeTensor1"
;
std
::
string
input_scale_
=
"Scale"
;
std
::
string
input1_
=
"OutSize"
;
std
::
string
output_
=
"Out"
;
float
height_scale_
=
0.0
f
;
float
width_scale_
=
0.0
f
;
int
out_height_
=
-
1
;
int
out_width_
=
-
1
;
bool
align_corners_
=
true
;
std
::
string
interp_method_
=
"Nearest"
;
DDim
dims_
{{
2
,
3
}};
DDim
_dims0_
{{
2
,
3
,
3
,
2
}};
DDim
_dims1_
{{
2
}};
DDim
sizetensor_dims_
{{
1
}};
DDim
scale_dims_
{{
1
}};
public:
NearestInterpComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
float
height_scale
,
float
width_scale
,
int
out_height
,
int
out_width
,
bool
align_corners
,
std
::
string
interp_method
)
:
TestCase
(
place
,
alias
),
height_scale_
(
height_scale
),
width_scale_
(
width_scale
),
out_height_
(
out_height
),
out_width_
(
out_width
),
align_corners_
(
align_corners
),
interp_method_
(
interp_method
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
width_scale_
=
height_scale_
;
auto
*
outputs
=
scope
->
NewTensor
(
output_
);
CHECK
(
outputs
);
outputs
->
Resize
(
dims_
);
std
::
vector
<
const
lite
::
Tensor
*>
inputs
;
inputs
.
emplace_back
(
scope
->
FindTensor
(
input0_
));
inputs
.
emplace_back
(
scope
->
FindTensor
(
input1_
));
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
(
2
);
SizeTensor
[
0
]
=
scope
->
FindTensor
(
sizetensor0_
);
SizeTensor
[
1
]
=
scope
->
FindTensor
(
sizetensor1_
);
const
lite
::
Tensor
*
input_scale
=
scope
->
FindTensor
(
input_scale_
);
float
scale
=
height_scale_
;
int
in_h
=
inputs
[
0
]
->
dims
()[
2
];
int
in_w
=
inputs
[
0
]
->
dims
()[
3
];
if
(
SizeTensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
SizeTensor
);
out_height_
=
new_size
[
0
];
out_width_
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
input_scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_height_
=
static_cast
<
int
>
(
in_h
*
scale
);
out_width_
=
static_cast
<
int
>
(
in_w
*
scale
);
}
auto
out_size
=
inputs
[
1
];
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_height_
=
out_size_data
[
0
];
out_width_
=
out_size_data
[
1
];
}
}
height_scale_
=
scale
;
width_scale_
=
scale
;
if
(
out_width_
!=
-
1
&&
out_height_
!=
-
1
)
{
height_scale_
=
static_cast
<
float
>
(
out_height_
/
inputs
[
0
]
->
dims
()[
2
]);
width_scale_
=
static_cast
<
float
>
(
out_width_
/
inputs
[
0
]
->
dims
()[
3
]);
}
int
num_cout
=
inputs
[
0
]
->
dims
()[
0
];
int
c_cout
=
inputs
[
0
]
->
dims
()[
1
];
outputs
->
Resize
({
num_cout
,
c_cout
,
out_height_
,
out_width_
});
resize_nearest_align
<
float
>
(
inputs
,
outputs
,
align_corners_
);
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"nearest_interp"
);
op_desc
->
SetInput
(
"X"
,
{
input0_
});
op_desc
->
SetInput
(
"SizeTensor"
,
{
sizetensor0_
,
sizetensor1_
});
op_desc
->
SetInput
(
"Scale"
,
{
input_scale_
});
op_desc
->
SetInput
(
"OutSize"
,
{
input1_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetAttr
(
"scale"
,
height_scale_
);
op_desc
->
SetAttr
(
"out_h"
,
out_height_
);
op_desc
->
SetAttr
(
"out_w"
,
out_width_
);
op_desc
->
SetAttr
(
"align_corners"
,
align_corners_
);
op_desc
->
SetAttr
(
"interp_method"
,
interp_method_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
data0
(
_dims0_
.
production
());
for
(
int
i
=
0
;
i
<
_dims0_
.
production
();
i
++
)
{
data0
[
i
]
=
i
*
1.1
;
}
std
::
vector
<
int
>
data1
(
_dims1_
.
production
());
for
(
int
i
=
0
;
i
<
_dims1_
.
production
();
i
++
)
{
data1
[
i
]
=
(
i
+
1
)
*
2
;
}
SetCommonTensor
(
input0_
,
_dims0_
,
data0
.
data
());
SetCommonTensor
(
input1_
,
_dims1_
,
data1
.
data
());
std
::
vector
<
int
>
sizetensor_data
(
1
);
sizetensor_data
[
0
]
=
out_height_
;
SetCommonTensor
(
sizetensor0_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
sizetensor_data
[
0
]
=
out_width_
;
SetCommonTensor
(
sizetensor1_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
std
::
vector
<
float
>
scale_data
(
1
);
scale_data
[
0
]
=
height_scale_
;
SetCommonTensor
(
input_scale_
,
scale_dims_
,
scale_data
.
data
());
}
};
void
test_nearest_interp
(
Place
place
)
{
std
::
string
interp_method
=
"Nearest"
;
for
(
float
scale
:
{
0.123
,
2.
,
1.2
})
{
for
(
int
out_height
:
{
2
,
1
,
6
})
{
for
(
int
out_width
:
{
2
,
3
,
5
})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
NearestInterpComputeTester
(
place
,
"def"
,
scale
,
scale
,
out_height
,
out_width
,
align_corners
,
interp_method
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
}
}
}
}
}
TEST
(
NearestInterp
,
precision
)
{
// #ifdef LITE_WITH_X86
// Place place(TARGET(kX86));
// #endif
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
test_nearest_interp
(
place
);
#endif
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录