提交 511c9893 编写于 作者: W WangLiu 提交者: GitHub

Merge pull request #400 from cocodark/develop

add conv_add op & param
......@@ -36,6 +36,7 @@ else()
endif()
if (USE_EXCEPTION)
message(STATUS "use exception")
add_definitions(-DENABLE_EXCEPTION)
add_definitions(-fexceptions)
else()
......@@ -86,6 +87,7 @@ if (googlenet)
add_definitions(-DFUSION_FC_OP)
add_definitions(-DPOOL_OP)
add_definitions(-DRELU_OP)
add_definitions(-DFUSION_CONVADD_OP)
elseif (mobilenet)
add_definitions(-DCONV_OP)
add_definitions(-DELEMENTWISEADD_OP)
......
......@@ -99,6 +99,7 @@ static std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
op_input_output_key = {
{G_OP_TYPE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_CONV_ADD, {{"Input"}, {"Out"}}},
{G_OP_TYPE_RELU, {{"X"}, {"Out"}}},
{G_OP_TYPE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_MUL, {{"X"}, {"Out"}}},
......
......@@ -12,14 +12,37 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSIONCONVADD_OP
#ifdef FUSION_CONVADD_OP
#include "operators/fusion_conv_add.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void FushionConvAddOp<Dtype, T>::InferShape() const {}
void FushionConvAddOp<Dtype, T>::InferShape() const {
auto in_dims = param_.Input()->dims();
auto filter_dims = param_.Filter()->dims();
const std::vector<int> &strides = param_.Strides();
std::vector<int> paddings = param_.Paddings();
int groups = param_.Groups();
std::vector<int> dilations = param_.Dilations();
PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() &&
dilations.size() == paddings.size() &&
paddings.size() == strides.size()),
"ConvParam is not suitable");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
dilations[i], paddings[i],
strides[i]));
}
framework::DDim ddim = framework::make_ddim(output_shape);
param_.Output()->Resize(ddim);
}
template class FushionConvAddOp<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -12,15 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSIONCONVADD_OP
#ifdef FUSION_CONVADD_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "op_param.h"
#include "operators/kernel/conv_add_kernel.h"
namespace paddle_mobile {
namespace operators {
......@@ -53,19 +54,32 @@ class FushionConvAddOp : public framework::OperatorWithKernel<DeviceType> {
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs, attrs,
scope) {}
scope),
param_(inputs, outputs, attrs, *scope) {}
void RunImpl() const {}
void RunImpl() const {
operators::ConvAddKernel<DeviceType, T> kernel;
kernel.Compute(param_);
this->ClearVariables({"Filter", "Input", "Y"});
}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
// FushionFcParam param_;
FushionConvAddParam param_;
};
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
int padding, int stride) {
const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size;
}
#ifdef PADDLE_MOBILE_CPU
static framework::FusionOpRegistrar fc_registrar(new FusionConvAddMatcher());
static framework::FusionOpRegistrar convadd_registrar(
new FusionConvAddMatcher());
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
void ConvAddKernel<CPU, float>::Compute(
const FushionConvAddParam &param) const {
DLOG << param;
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor *output = param.Output();
output->mutable_data<float>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
// DLOG << " compute end get Attrs " << strides[0];
const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
col_shape_vec[0] = input->dims()[1] / groups;
for (size_t j = 0; j < data_dim; ++j) {
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
}
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
DLOG << " filter.dims() = " << filter.dims();
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) {
col.ShareDataWith(in_slice);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
} else if (data_dim == 2U) {
// im2col
im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
}
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
}
}
}
template class ConvAddKernel<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#pragma once
#include <vector>
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class ConvAddKernel : public OpKernelBase<DeviceType, FushionConvAddParam> {
public:
void Compute(const FushionConvAddParam &param) const;
};
inline bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides,
const std::vector<int> &paddings,
const std::vector<int> &dilations) {
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
for (size_t j = 0; j < strides.size(); ++j) {
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
strides_1 = strides_1 && (strides[j] == 1);
padding_0 = padding_0 && (paddings[j] == 0);
dilation_1 = dilation_1 && (dilations[j] == 1);
}
return !(filter_1 && strides_1 && padding_0 && dilation_1);
}
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -39,5 +39,31 @@ Print &operator<<(Print &printer, const ConvParam &conv_param) {
}
#endif
#ifdef FUSION_CONVADD_OP
Print &operator<<(Print &printer, const FushionConvAddParam &conv_param) {
printer << "parameter of conv_add: "
<< "\n";
printer << " stride: "
<< " (" << conv_param.Strides()[0] << conv_param.Strides()[1] << ") "
<< "\n";
printer << " paddings: "
<< " (" << conv_param.Paddings()[0] << conv_param.Paddings()[1]
<< ") "
<< "\n";
printer << " dilations: "
<< " (" << conv_param.Dilations()[0] << conv_param.Dilations()[1]
<< ") "
<< "\n";
printer << " groups: " << conv_param.Groups() << "\n";
printer << " input dims: " << conv_param.Input()->dims() << "\n";
printer << " filter dims: " << conv_param.Filter()->dims() << "\n";
printer << " bias dims: " << conv_param.Bias()->dims() << "\n";
printer << " output dims: " << conv_param.Output()->dims();
return printer;
}
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -165,6 +165,8 @@ class OpParam {
template <typename T>
static T *GetVarValue(const string &key, const VariableNameMap &var_map,
const Scope &scope) {
PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
"%s is not contained in var_map", key.c_str())
auto var_vec = var_map.at(key);
if (!var_vec.empty()) {
auto var = scope.FindVar(var_vec[0]);
......@@ -787,5 +789,54 @@ class FushionFcParam : public OpParam {
};
#endif
#ifdef FUSION_CONVADD_OP
class FushionConvAddParam : public OpParam {
public:
FushionConvAddParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
bias_ = InputYFrom<LoDTensor>(inputs, scope);
axis_ = GetAttr<int>("axis", attrs);
filter_ = FilterFrom<LoDTensor>(inputs, scope);
input_ = InputFrom<LoDTensor>(inputs, scope);
output_ = OutFrom<LoDTensor>(outputs, scope);
strides_ = GetAttr<vector<int>>("strides", attrs);
paddings_ = GetAttr<vector<int>>("paddings", attrs);
dilations_ = GetAttr<vector<int>>("dilations", attrs);
groups = GetAttr<int>("groups", attrs);
}
Tensor *Bias() const { return bias_; }
const int &Axis() const { return axis_; }
const Tensor *Input() const { return input_; }
const Tensor *Filter() const { return filter_; }
Tensor *Output() const { return output_; }
const vector<int> &Strides() const { return strides_; }
const vector<int> &Paddings() const { return paddings_; }
const vector<int> &Dilations() const { return dilations_; }
const int &Groups() const { return groups; }
private:
Tensor *bias_;
int axis_;
Tensor *input_;
Tensor *output_;
Tensor *filter_;
vector<int> strides_;
vector<int> paddings_;
vector<int> dilations_;
int groups;
};
Print &operator<<(Print &printer, const FushionConvAddParam &conv_param);
#endif
} // namespace operators
} // namespace paddle_mobile
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册