提交 5116e519 编写于 作者: xiebaiyuan's avatar xiebaiyuan

Merge remote-tracking branch 'upstream/develop' into develop

......@@ -14,11 +14,9 @@ limitations under the License. */
#include "api.h"
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <algorithm>
#include <cstring>
#include <memory>
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
......@@ -48,6 +46,7 @@ int open_device() {
// memory management;
void *fpga_malloc(size_t size) {
DLOG << size << " bytes allocated";
#ifdef PADDLE_MOBILE_OS_LINUX
return reinterpret_cast<void *>(
mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
......@@ -68,6 +67,20 @@ void fpga_copy(void *dest, const void *src, size_t num) {
memcpy(dest, src, num);
}
int fpga_flush(void *address, size_t size) {
struct MemoryCacheArgs args;
args.address = address;
args.size = size;
return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}
int fpga_invalidate(void *address, size_t size) {
struct MemoryCacheArgs args;
args.address = address;
args.size = size;
return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
#ifdef FPGA_TEST_MODE
/*DLOG << " relu_enabled:" << args.relu_enabled
......@@ -145,8 +158,8 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
}
int PerformBypass(const struct BypassArgs &args) {
#ifdef FPGA_TEST_MODE
DLOG << " layout_type:" << args.layout_type
<< " convert_type:" << args.convert_type;
DLOG << " input_type:" << args.input_data_type
<< " input_layout_type:" << args.input_layout_type;
DLOG << " image_address:" << args.image.address
<< " image_scale_address:" << args.image.scale_address
<< " image_channels:" << args.image.channels
......@@ -181,10 +194,19 @@ void format_image(framework::Tensor *image_tensor) {
void format_ofm(framework::Tensor *ofm_tensor) {
auto dims = ofm_tensor->dims();
auto channel = dims[1], height = dims[2], width = dims[3];
size_t memory_size =
height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
ofm_tensor->reset_data_ptr(fpga_malloc(memory_size));
size_t memory_size = 0;
if (dims.size() == 4) {
auto channel = dims[1], height = dims[2], width = dims[3];
memory_size =
height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
} else if (dims.size() == 2) {
memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
} else {
DLOG << "Wrong ofm dimension";
}
auto p = fpga_malloc(memory_size);
memset(p, 0, memory_size);
ofm_tensor->reset_data_ptr(p);
}
float filter_find_max(framework::Tensor *filter_tensor) {
......@@ -200,7 +222,7 @@ int get_plit_num(framework::Tensor *filter_tensor) {
return filter::calc_split_num(num, div_capacity);
}
int get_element_num_per_div(framework::Tensor *filter_tensor, int group_num) {
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
auto dims = filter_tensor->dims();
auto chw = dims[1] * dims[2] * dims[3];
auto num = dims[0];
......@@ -279,7 +301,7 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
arg->concat_arg.image_out = out_ptr;
const int channel = (int)out->dims()[1];
int element_num_per_div = fpga::get_element_num_per_div(filter, group_num);
int filter_num_per_div = fpga::get_filter_num_per_div(filter, group_num);
int element_num = fpga::get_aligned_filter_element_num(
filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);
......@@ -297,12 +319,14 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
arg->conv_args[i].image.scale_address = input->scale;
arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
arg->conv_args[i].filter_address = &((int8_t *)filter_ptr)[i * element_num];
arg->conv_args[i].sb_address = &((int8_t *)bs_ptr)[i * element_num];
arg->conv_args[i].filter_scale_address = filter->scale;
arg->conv_args[i].filter_address =
&((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
arg->conv_args[i].filter_num =
(uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
channel - (n - 1) * element_num_per_div)
: element_num_per_div);
channel - (n - 1) * filter_num_per_div)
: filter_num_per_div);
if (n > 1) {
arg->conv_args[i].output.scale_address =
......
......@@ -25,23 +25,14 @@ limitations under the License. */
namespace paddle_mobile {
namespace fpga {
int open_device();
int close_device();
void* fpga_malloc(size_t size);
void fpga_free(void* ptr);
void fpga_copy(void* dst, const void* src, size_t num);
enum DataConvertType {
DATA_NO_CONVERT = 0,
DATA_FP32_TO_FP16 = 1,
DATA_FP16_TO_FP32 = 2,
enum DataType {
DATA_TYPE_FP32 = 1,
DATA_TYPE_FP16 = 0,
};
enum LayoutConvertType {
LAYOUT_NO_CONVERT = 0,
LAYOUT_CHW_TO_HWC = 1,
LAYOUT_HWC_TO_CHW = 2,
enum LayoutType {
LAYOUT_CHW = 1,
LAYOUT_HWC = 0,
};
struct VersionArgs {
......@@ -122,16 +113,18 @@ struct PoolingArgs {
struct EWAddArgs {
bool relu_enabled;
float const0; // output0 = const0 x input0 + const1 x input1;
float const1;
uint32_t const0; // output0 = const0 x input0 + const1 x input1;
uint32_t const1;
struct ImageInputArgs image0;
struct ImageInputArgs image1;
struct ImageOutputArgs output;
};
struct BypassArgs {
enum DataConvertType convert_type;
enum LayoutConvertType layout_type;
enum DataType input_data_type;
enum DataType output_data_type;
enum LayoutType input_layout_type;
enum LayoutType output_layout_type;
struct ImageInputArgs image;
struct ImageOutputArgs output;
};
......@@ -141,6 +134,16 @@ struct FpgaRegWriteArgs {
uint64_t value;
};
struct FpgaRegReadArgs {
uint64_t address;
uint64_t value;
};
struct MemoryCacheArgs {
void* address;
size_t size;
};
#define IOCTL_FPGA_MAGIC 'FPGA'
#define IOCTL_VERSION _IOW(IOCTL_FPGA_MAGIC, 01, struct VersionArgs)
......@@ -148,6 +151,8 @@ struct FpgaRegWriteArgs {
#define IOCTL_SEPARATOR_0 10
#define IOCTL_MEM_COPY _IOW(IOCTL_FPGA_MAGIC, 11, struct MemoryCopyArgs)
#define IOCTL_MEMCACHE_INVAL _IOW(IOCTL_FPGA_MAGIC, 12, struct MemoryCacheArgs)
#define IOCTL_MEMCACHE_FLUSH _IOW(IOCTL_FPGA_MAGIC, 13, struct MemoryCacheArgs)
#define IOCTL_SEPARATOR_1 20
......@@ -184,6 +189,15 @@ enum FPGA_ERR_TYPE {
//============================== API =============================
int open_device();
int close_device();
void* fpga_malloc(size_t size);
void fpga_free(void* ptr);
void fpga_copy(void* dst, const void* src, size_t num);
int fpga_flush(void* address, size_t size);
int fpga_invalidate(void* address, size_t size);
int PerformBypass(const struct BypassArgs& args);
int ComputeFpgaConv(const struct WrapperConvArgs& args);
int ComputeFpgaPool(const struct PoolingArgs& args);
......@@ -196,7 +210,7 @@ void format_image(framework::Tensor* image_tensor);
void format_ofm(framework::Tensor* ofm_tensor); // only allocate memory
float filter_find_max(framework::Tensor* filter_tensor);
int get_element_num_per_div(framework::Tensor* filter_tensor, int group_num);
int get_filter_num_per_div(framework::Tensor* filter_tensor, int group_num);
int get_plit_num(framework::Tensor* filter_tensor);
int get_aligned_filter_element_num(int chw);
int get_aligned_filter_num(int num);
......
......@@ -79,6 +79,7 @@ void format_bias_scale_array(float **bias_scale_array,
int element_num_after_division =
align_to_x(element_num_per_division, BS_NUM_ALIGNMENT);
interleave(bias_scale_array, div_num * element_num_after_division);
fpga_flush(*bias_scale_array, 2 * element_num_after_division * sizeof(float));
}
} // namespace bias_scale
......
......@@ -101,7 +101,6 @@ void align_element(char **data_in, int num, int chw) {
int j = 0;
int align_chw = align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
if (align_chw != chw) {
printf("align %d \n", align_chw);
char *tmp = *data_in;
char *data_tmp = (char *)fpga_malloc(num * align_chw * sizeof(char));
......@@ -207,6 +206,8 @@ void format_filter(float **data_in, int num, int channel, int height, int width,
align_num(quantize_data, num_per_div_before_alignment, num, chw);
reorder(quantize_data, num_after_alignment, chw);
interleave(quantize_data, num_after_alignment, chw);
fpga_flush(*quantize_data, align_to_x(chw, FILTER_ELEMENT_ALIGNMENT) *
num_after_alignment * sizeof(char));
}
} // namespace filter
......
......@@ -38,7 +38,6 @@ void convert_to_hwc(float **data_in, int channel, int height, int width) {
}
void align_element_conv(float **data_in, int height, int cw) {
int i = 0;
int h = 0;
int align_cw = align_to_x(cw, IMAGE_ALIGNMENT);
if (align_cw != cw) {
......@@ -60,6 +59,8 @@ void align_element_conv(float **data_in, int height, int cw) {
void format_image(float **data_in, int channel, int height, int width) {
convert_to_hwc(data_in, channel, height, width);
align_element_conv(data_in, height, channel * width);
fpga_flush(*data_in, align_to_x(channel * width, IMAGE_ALIGNMENT) * height *
sizeof(float));
}
void concat_images(int16_t **images_in, float **scales_in, void *image_out,
......@@ -77,6 +78,10 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
for (i = 0; i < image_num; i++) {
each_out_line_channel += channel_num[i];
*scale_out = std::max(*scale_out, scales_in[i][0]);
fpga_invalidate(images_in[i],
height *
align_to_x(channel_num[i] * width, IMAGE_ALIGNMENT) *
sizeof(int16_t));
}
align_each_out_area_cw =
align_to_x(each_out_line_channel * width, IMAGE_ALIGNMENT);
......@@ -97,6 +102,8 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
}
}
}
fpga_flush(image_out, height * align_each_out_area_cw * sizeof(int16_t));
}
} // namespace image
......
......@@ -56,8 +56,11 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
auto output_ptr = output->mutable_data<half>();
fpga::BypassArgs args;
args.convert_type = fpga::DATA_FP32_TO_FP16;
args.layout_type = fpga::LAYOUT_NO_CONVERT;
args.input_data_type = fpga::DATA_TYPE_FP32;
args.output_data_type = fpga::DATA_TYPE_FP16;
args.input_layout_type = fpga::LAYOUT_CHW;
args.output_layout_type = fpga::LAYOUT_HWC;
args.image.address = (void *)input_ptr;
args.image.channels = input->dims()[1];
args.image.height = input->dims()[2];
......
......@@ -23,7 +23,7 @@ template <>
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
bool relu_enabled = false;
auto input = const_cast<Tensor *>(param->Input());
auto input_ptr = input->data<float>();
auto bias = param->Bias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
......@@ -62,7 +62,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
fpga::format_filter(filter, max_value, param->Groups());
int element_num_per_div =
fpga::get_element_num_per_div(filter, param->Groups());
fpga::get_filter_num_per_div(filter, param->Groups());
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_ofm(out);
......@@ -80,7 +80,6 @@ void ConvAddBNKernel<FPGA, float>::Compute(
const FusionConvAddBNParam<FPGA> &param) const {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -24,7 +24,6 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
FusionConvAddBNReluParam<FPGA> *param) {
bool relu_enabled = true;
auto input = const_cast<Tensor *>(param->Input());
auto input_ptr = input->data<float>();
const Tensor *bias = param->Bias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
......@@ -58,14 +57,12 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
float max_value = fpga::filter_find_max(filter);
fpga::format_filter(filter, max_value, param->Groups());
auto filter_ptr = filter->data<float>();
int element_num_per_div =
fpga::get_element_num_per_div(filter, param->Groups());
fpga::get_filter_num_per_div(filter, param->Groups());
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_ofm(out);
auto out_ptr = out->mutable_data<float>();
fpga::WrapperConvArgs conv_arg;
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
......@@ -80,7 +77,6 @@ void ConvAddBNReluKernel<FPGA, float>::Compute(
const FusionConvAddBNReluParam<FPGA> &param) const {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNReluKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -23,7 +23,6 @@ template <>
bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
bool relu_enabled = true;
auto input = const_cast<Tensor *>(param->Input());
auto input_ptr = input->data<float>();
const Tensor *bias = param->Bias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
......@@ -40,14 +39,12 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
float max_value = fpga::filter_find_max(filter);
fpga::format_filter(filter, max_value, param->Groups());
auto filter_ptr = filter->data<float>();
int element_num_per_div =
fpga::get_element_num_per_div(filter, param->Groups());
fpga::get_filter_num_per_div(filter, param->Groups());
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_ofm(out);
auto out_ptr = out->mutable_data<float>();
fpga::WrapperConvArgs conv_arg;
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
......@@ -62,7 +59,6 @@ void ConvAddReluKernel<FPGA, float>::Compute(
const FusionConvAddReluParam<FPGA> &param) const {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddReluKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -24,7 +24,6 @@ template <>
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
bool relu_enabled = false;
auto input = const_cast<Tensor *>(param->Input());
auto input_ptr = input->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
auto bn_mean_ptr = param->InputMean()->data<float>();
......@@ -55,14 +54,12 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
float max_value = fpga::filter_find_max(filter);
fpga::format_filter(filter, max_value, param->Groups());
auto filter_ptr = filter->data<float>();
int element_num_per_div =
fpga::get_element_num_per_div(filter, param->Groups());
fpga::get_filter_num_per_div(filter, param->Groups());
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_ofm(out);
auto out_ptr = out->mutable_data<float>();
fpga::WrapperConvArgs conv_arg;
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
......@@ -77,7 +74,6 @@ void ConvBNKernel<FPGA, float>::Compute(
const FusionConvBNParam<FPGA> &param) const {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -23,7 +23,6 @@ template <>
bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
bool relu_enabled = true;
auto input = const_cast<Tensor *>(param->Input());
auto input_ptr = input->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
auto bn_mean_ptr = param->InputMean()->data<float>();
......@@ -52,27 +51,12 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
float max_value = fpga::filter_find_max(filter);
fpga::format_filter(filter, max_value, param->Groups());
auto filter_ptr = filter->data<float>();
int element_num_per_div =
fpga::get_element_num_per_div(filter, param->Groups());
fpga::get_filter_num_per_div(filter, param->Groups());
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_ofm(out);
auto out_ptr = out->mutable_data<float>();
fpga::WrapperConvArgs convArgs;
convArgs.group_num = (uint32_t)param->Groups();
convArgs.split_num = (uint32_t)fpga::get_plit_num(filter);
convArgs.filter_num = (uint32_t)filter->dims()[0];
convArgs.output.address = out_ptr;
convArgs.output.scale_address = out->scale;
convArgs.conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(
convArgs.split_num * sizeof(fpga::ConvArgs));
param->SetFpgaArgs(convArgs);
int element_num = fpga::get_aligned_filter_element_num(
filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);
fpga::WrapperConvArgs conv_arg;
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
......@@ -87,7 +71,6 @@ void ConvBNReluKernel<FPGA, float>::Compute(
const FusionConvBNReluParam<FPGA> &param) const {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNReluKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -27,13 +27,7 @@ bool DropoutKernel<FPGA, float>::Init(DropoutParam<FPGA> *param) {
template <>
void DropoutKernel<FPGA, float>::Compute(
const DropoutParam<FPGA> &param) const {
// auto *input_x = param.InputX();
// auto *out = param.Out();
// auto input_x_ptr = input_x->data<float>();
// auto out_ptr = out->mutable_data<float>();
// out_ptr = const_cast<float *>(input_x_ptr);
}
const DropoutParam<FPGA> &param) const {}
} // namespace operators
} // namespace paddle_mobile
......
......@@ -21,7 +21,6 @@ template <>
bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
bool relu_enabled = true;
auto input_x = const_cast<LoDTensor *>(param->InputX());
auto input_x_ptr = input_x->data<float>();
auto filter = const_cast<Tensor *>(param->InputY());
auto input_z = param->InputZ();
auto input_z_ptr = input_z->data<float>();
......@@ -47,12 +46,10 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
filter->Resize(framework::make_ddim({num, filter_channel, height, width}));
float max_value = fpga::filter_find_max(filter);
fpga::format_filter(filter, max_value, 1);
auto filter_ptr = filter->data<float>();
int element_num_per_div = fpga::get_element_num_per_div(filter, 1);
int element_num_per_div = fpga::get_filter_num_per_div(filter, 1);
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
auto out_ptr = out->mutable_data<float>();
fpga::format_ofm(out);
fpga::WrapperConvArgs conv_arg;
fpga::fill_conv_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1, 0,
......
......@@ -22,7 +22,6 @@ template <>
bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
bool relu_enabled = false;
auto input_x = const_cast<LoDTensor *>(param->InputX());
auto input_x_ptr = input_x->data<float>();
auto filter = const_cast<Tensor *>(param->InputY());
const Tensor *input_z = param->InputZ();
auto input_z_ptr = input_z->data<float>();
......@@ -48,12 +47,10 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
filter->Resize(framework::make_ddim({num, filter_channel, height, width}));
float max_value = fpga::filter_find_max(filter);
fpga::format_filter(filter, max_value, 1);
auto filter_ptr = filter->data<float>();
int element_num_per_div = fpga::get_element_num_per_div(filter, 1);
int element_num_per_div = fpga::get_filter_num_per_div(filter, 1);
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
auto out_ptr = out->mutable_data<float>();
fpga::format_ofm(out);
fpga::WrapperConvArgs conv_arg;
fpga::fill_conv_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1, 0,
......
......@@ -50,9 +50,7 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
template <>
void PoolKernel<FPGA, float>::Compute(const PoolParam<FPGA> &param) const {
#ifdef PADDLE_MOBILE_FPGA
fpga::ComputeFpgaPool(param.FpgaArgs());
#endif
}
} // namespace operators
} // namespace paddle_mobile
......
......@@ -25,30 +25,41 @@ namespace operators {
template <>
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
const Tensor *input = param->InputX();
auto input_ptr = input->data<float>();
auto output = param->Out();
auto output_ptr = output->mutable_data<float>();
auto output_ptr = param->Out();
Tensor *floatInput = new Tensor(*input);
fpga::BypassArgs args;
args.convert_type = fpga::DATA_FP16_TO_FP32;
args.layout_type = fpga::LAYOUT_NO_CONVERT;
args.input_layout_type = fpga::LAYOUT_HWC;
args.output_layout_type = fpga::LAYOUT_CHW;
args.input_data_type = fpga::DATA_TYPE_FP16;
args.output_data_type = fpga::DATA_TYPE_FP32;
args.image.address = (void *)(input_ptr);
args.image.height = (uint32_t)input->dims()[0];
args.image.width = (uint32_t)input->dims()[1];
args.image.channels = 1;
args.output.address = output_ptr;
param->SetFpgaArgs(args);
args.output.address = (void *)floatInput->mutable_data<float>();
param->SetFloatInput(floatInput);
param->SetFpgaArgs(args);
return true;
}
template <>
void SoftmaxKernel<FPGA, float>::Compute(
const SoftmaxParam<FPGA> &param) const {
// SoftmaxCompute<float>(param);
DLOG << "======================================= FPGA SoftMAX "
"===============================================";
const Tensor *in_x = param.FloatInput();
Tensor *out = param.Out();
fpga::fpga_flush((void *)in_x->data<float>(), in_x->memory_size());
fpga::PerformBypass(param.FpgaArgs());
fpga::fpga_invalidate(out->data<float>(), out->memory_size());
auto x_dims = in_x->dims();
out->Resize(x_dims);
math::SoftmaxFuntor<CPU, float>()(in_x, out);
}
template class SoftmaxKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -74,7 +74,7 @@ class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
const int isize = im_height;
bool pad1 = padding[0] > 0;
bool pad2 =
(pad1 &&
(pad1 && padding[1] &&
(((isize - 2 * padding[0] + filter_height) % stride[0] == 0) ? 1 : 0));
int fill = isize % 2;
if (stride[0] == 1 && filter_height == 3 && pad1 && pad2 &&
......
......@@ -36,13 +36,35 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
int N = dim_out[1];
int K = (!trans_a) ? dim_a[1] : dim_a[0];
if (trans_a) {
int numel = matrix_a.numel();
int m = matrix_a.dims()[0];
int n = matrix_a.dims()[1];
float *tmp = (float *)(matrix_a.data<float>());
float *a = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * numel));
int index = 0;
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
a[index++] = tmp[i * n + j];
}
}
#ifdef _OPENMP
Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<float>(), N, beta,
matrix_out->data<float>(), N, relu, bias);
#else
Sgemm(M, N, K, alpha, a, K, matrix_b.data<float>(), N, beta,
matrix_out->data<float>(), N, relu, bias);
#endif
} else {
#ifdef _OPENMP
Sgemm_omp(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
N, beta, matrix_out->data<float>(), N, relu, bias);
Sgemm_omp(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
N, beta, matrix_out->data<float>(), N, relu, bias);
#else
Sgemm(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
beta, matrix_out->data<float>(), N, relu, bias);
Sgemm(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
beta, matrix_out->data<float>(), N, relu, bias);
#endif
}
}
template <>
......
此差异已折叠。
......@@ -795,7 +795,7 @@ class SoftmaxParam : public OpParam {
fpga::BypassArgs fpga_bypass_args;
public:
RType *FloatInput() {
RType *FloatInput() const {
return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
}
void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
......
......@@ -22,7 +22,7 @@ namespace fpga = paddle_mobile::fpga;
using std::cout;
using std::endl;
int main() {
void test_format_image() {
std::vector<int> dims{1, 1, 3, 3};
std::vector<float> elements{1, 2, 3, 4, 5, 6, 7, 8, 9};
frame::DDim ddim = frame::make_ddim(dims);
......@@ -44,6 +44,50 @@ int main() {
cout << endl;
auto dd = image.dims();
cout << dims[0] << dims[1] << dims[2] << dims[3] << endl;
}
void test_fill_conv_arg() {
Tensor input, out, filter;
DLOG << "Setup input";
SetupTensor<int16_t>(&input, {1, 250, 32, 30}, static_cast<int16_t>(0),
static_cast<int16_t>(1));
DLOG << "Setup filter";
SetupTensor<float>(&filter, {1001, 250, 3, 3}, static_cast<float>(0),
static_cast<float>(1));
DLOG << "Setup output";
SetupTensor<int16_t>(&out, {1, 1001, 32, 30}, static_cast<int16_t>(0),
static_cast<int16_t>(1));
auto bs_ptr = (float *)fpga::fpga_malloc(2 * 1001 * sizeof(float));
DLOG << "find max";
float max_value = fpga::filter_find_max(&filter);
DLOG << "format filter";
fpga::format_filter(&filter, max_value, 1);
DLOG << "format bs_ptr";
int element_num_per_div = fpga::get_filter_num_per_div(&filter, 1);
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, 1001);
DLOG << "format ofm";
fpga::format_ofm(&out);
DLOG << "Build arg";
fpga::WrapperConvArgs arg;
fpga::fill_conv_arg(&arg, &input, &out, &filter, true, 1, 1, 1, 1, 1, bs_ptr);
DLOG << "splitNum: " << arg.split_num << " group_num:" << arg.group_num
<< " filter_num:" << arg.filter_num;
for (int i = 0; i < arg.split_num; i++) {
DLOG << arg.conv_args[i].filter_num << " " << arg.conv_args[i].sb_address
<< " " << arg.conv_args[i].filter_address << " "
<< arg.conv_args[i].filter_scale_address;
}
}
int main() {
test_format_image();
test_fill_conv_arg();
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册