Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4f07b27a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4f07b27a
编写于
10月 19, 2018
作者:
R
Ray Liu
提交者:
GitHub
10月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1157 from codeWorm2015/opencl
update softmax reshape kernel
上级
257a7dc8
9905fcd4
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
159 addition
and
65 deletion
+159
-65
src/framework/cl/cl_helper.h
src/framework/cl/cl_helper.h
+7
-15
src/framework/cl/cl_image.cpp
src/framework/cl/cl_image.cpp
+3
-0
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+15
-4
src/framework/executor.cpp
src/framework/executor.cpp
+1
-1
src/operators/kernel/cl/cl_kernel/reshape.cl
src/operators/kernel/cl/cl_kernel/reshape.cl
+27
-0
src/operators/kernel/cl/cl_kernel/softmax.cl
src/operators/kernel/cl/cl_kernel/softmax.cl
+37
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+29
-29
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+1
-1
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+1
-1
src/operators/kernel/cl/depthwise_conv_kernel.cpp
src/operators/kernel/cl/depthwise_conv_kernel.cpp
+1
-1
src/operators/kernel/cl/reshape_kernel.cpp
src/operators/kernel/cl/reshape_kernel.cpp
+3
-0
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+34
-13
未找到文件。
src/framework/cl/cl_helper.h
浏览文件 @
4f07b27a
...
...
@@ -49,34 +49,26 @@ class CLHelper {
cl_context
CLContext
()
{
return
scope_
->
Context
();
}
std
::
vector
<
size_t
>
DefaultWorkSize
(
const
CLImage
&
image
)
{
if
(
image
.
GetImageType
()
==
Invalid
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support image type"
);
}
// n c h w
auto
image_dim
=
image
.
dims
();
if
(
image_dim
.
size
()
==
4
)
{
auto
n
=
image_dim
[
0
];
auto
h
=
image_dim
[
2
];
auto
w
=
image_dim
[
3
];
auto
image_width
=
image
.
ImageWidth
();
auto
work_size_0
=
image_width
/
w
;
auto
work_size_1
=
w
;
auto
work_size_2
=
n
*
h
;
return
{
work_size_0
,
work_size_1
,
work_size_2
};
}
else
if
(
image_dim
.
size
()
==
2
)
{
auto
image_width
=
image
.
ImageWidth
();
auto
work_size_0
=
image_width
/
image_dim
[
1
];
auto
work_size_1
=
image_dim
[
1
];
auto
work_size_2
=
image_dim
[
0
];
return
{
work_size_0
,
work_size_1
,
work_size_2
};
return
{
1
,
image
.
ImageWidth
(),
image
.
ImageHeight
()};
}
else
if
(
image_dim
.
size
()
==
1
)
{
return
{
1
,
image
.
ImageWidth
(),
1
};
}
PADDLE_MOBILE_THROW_EXCEPTION
(
"
not support this dim, need imp
"
);
PADDLE_MOBILE_THROW_EXCEPTION
(
"
not support this dim, need imp
"
);
}
private:
...
...
src/framework/cl/cl_image.cpp
浏览文件 @
4f07b27a
...
...
@@ -119,6 +119,9 @@ void TensorToCLImage(const Tensor *tensor, CLImage *cl_image,
}
#ifdef PADDLE_MOBILE_DEBUG
Print
&
operator
<<
(
Print
&
printer
,
const
CLImage
&
cl_image
)
{
if
(
cl_image
.
GetImageType
()
==
Invalid
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support image type"
);
}
printer
<<
" dims: "
<<
cl_image
.
dims
()
<<
"
\n
"
;
int
stride
=
cl_image
.
numel
()
/
20
;
stride
=
stride
>
0
?
stride
:
1
;
...
...
src/framework/cl/cl_image.h
浏览文件 @
4f07b27a
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "framework/cl/cl_half.h"
#include "framework/cl/cl_tool.h"
#include "framework/cl/cl_deleter.h"
#include "framework/ddim.h"
#include "framework/tensor.h"
...
...
@@ -88,11 +89,20 @@ class CLImage {
" empty image tensor data shouldn't have value"
);
}
DLOG
<<
" init empty image "
;
InitCLImage
(
context
,
command_queue
,
nullptr
,
dim
);
if
(
tensor_dims_
.
size
()
<=
2
)
{
DLOG
<<
" dim <= 2 folder ~~~~~ "
;
InitCLImage2C
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
else
{
DLOG
<<
" dim > 2 norm ~~~~~ "
;
InitCLImage
(
context
,
command_queue
,
tensor_data_
,
tensor_dims_
);
}
// InitCLImage(context, command_queue, nullptr, dim);
initialized_
=
true
;
}
cl_mem
GetCLImage
()
const
{
return
cl_image_
;
}
cl_mem
GetCLImage
()
const
{
return
cl_image_
.
get
()
;
}
const
DDim
&
ImageDims
()
const
{
return
image_dims_
;
}
...
...
@@ -201,12 +211,13 @@ class CLImage {
};
cid
.
buffer
=
nullptr
;
cl_int
err
;
cl_
image_
=
clCreateImage
(
cl_
mem
cl_image
=
clCreateImage
(
context
,
CL_MEM_READ_WRITE
|
(
data
?
CL_MEM_COPY_HOST_PTR
:
0
),
&
cf
,
// const cl_image_format *image_format
&
cid
,
// const cl_image_desc *image_desc
data
,
// void *host_ptr
&
err
);
cl_image_
.
reset
(
cl_image
);
if
(
err
!=
CL_SUCCESS
)
{
CL_CHECK_ERRORS
(
err
);
PADDLE_MOBILE_THROW_EXCEPTION
(
" create image 2d error "
);
...
...
@@ -283,7 +294,7 @@ class CLImage {
}
bool
initialized_
=
false
;
cl_mem
cl_image_
;
std
::
unique_ptr
<
_cl_mem
,
CLMemDeleter
>
cl_image_
;
size_t
image_width_
;
size_t
width_of_one_block_
;
size_t
height_of_one_block_
;
...
...
src/framework/executor.cpp
浏览文件 @
4f07b27a
...
...
@@ -37,7 +37,7 @@ limitations under the License. */
#include "framework/cl/cl_image.h"
#endif
int
debug_to
=
3
3
;
int
debug_to
=
3
2
;
namespace
paddle_mobile
{
namespace
framework
{
...
...
src/operators/kernel/cl/cl_kernel/reshape.cl
浏览文件 @
4f07b27a
...
...
@@ -14,6 +14,31 @@ limitations under the License. */
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
reshape
(
__read_only
image2d_t
input,
__write_only
image2d_t
output,
__private
const
int
d0,
__private
const
int
d1,
__private
const
int
d2,
__private
const
int
d3,
__private
const
int
x0,
__private
const
int
x1,
__private
const
int
x2,
__private
const
int
x3
)
{
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
in
=
read_imageh
(
input,
sampler,
(
int2
)(
x,
y
))
;
write_imageh
(
output,
(
int2
)(
x,
y
)
,
in
)
;
}
/*
__kernel
void
reshape
(
__read_only
image2d_t
input,
__write_only
image2d_t
output,
__private
const
int
d0,
...
...
@@ -49,3 +74,5 @@ __kernel void reshape(__read_only image2d_t input,
}
write_imageh
(
output,
(
int2
)(
x,
y
)
,
r
)
;
}
*/
src/operators/kernel/cl/cl_kernel/softmax.cl
浏览文件 @
4f07b27a
...
...
@@ -14,6 +14,41 @@ limitations under the License. */
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
softmax
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
group
)
{
const
int
out_c
=
get_global_id
(
0
)
; // block index
const
int
out_w
=
get_global_id
(
1
)
; // index in one block
const
int
out_nh
=
get_global_id
(
2
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half
maxv
=
0.0f
;
for
(
int
i
=
0
; i < group; ++i) {
half4
temp
=
read_imageh
(
input_image,
sampler,
(
int2
)(
i,
0
))
;
maxv
=
max
(
maxv,
max
(
temp.x,
max
(
temp.y,
max
(
temp.z,
temp.w
))))
;
}
half4
rsum
=
(
half4
)(
0.0f
)
;
for
(
int
i
=
0
; i < group; ++i) {
half4
r
=
read_imageh
(
input_image,
sampler,
(
int2
)(
i,
0
))
;
rsum
+=
exp
(
r
-
maxv
)
;
}
half
sum
=
rsum.x
+
rsum.y
+
rsum.z
+
rsum.w
;
half4
rr
=
read_imageh
(
input_image,
sampler,
(
int2
)(
out_w,
out_nh
))
;
half4
result
=
exp
(
rr
-
maxv
)
/
sum
;
write_imageh
(
output_image,
(
int2
)(
out_w,
out_nh
)
,
result
)
;
}
/*
__kernel
void
softmax
(
__read_only
image2d_t
input,
__write_only
image2d_t
output,
__private
const
int
d0,
...
...
@@ -42,3 +77,5 @@ __kernel void softmax(__read_only image2d_t input,
write_imageh
(
output,
(
int2
)(
z
*
d3
+
x,
y
)
,
r
)
;
}
*/
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
4f07b27a
...
...
@@ -43,21 +43,21 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
const
int
C
=
mean
->
numel
();
for
(
int
j
=
0
;
j
<
C
;
++
j
)
{
DLOG
<<
" mean - "
<<
j
<<
mean
->
data
<
float
>
()[
j
];
}
for
(
int
j
=
0
;
j
<
C
;
++
j
)
{
DLOG
<<
" variance - "
<<
j
<<
variance
->
data
<
float
>
()[
j
];
}
for
(
int
j
=
0
;
j
<
C
;
++
j
)
{
DLOG
<<
" scale - "
<<
j
<<
scale
->
data
<
float
>
()[
j
];
}
for
(
int
j
=
0
;
j
<
C
;
++
j
)
{
DLOG
<<
" bias - "
<<
j
<<
bias
->
data
<
float
>
()[
j
];
}
//
for (int j = 0; j < C; ++j) {
//
DLOG << " mean - " << j << mean->data<float>()[j];
//
}
//
//
for (int j = 0; j < C; ++j) {
//
DLOG << " variance - " << j << variance->data<float>()[j];
//
}
//
//
for (int j = 0; j < C; ++j) {
//
DLOG << " scale - " << j << scale->data<float>()[j];
//
}
//
//
for (int j = 0; j < C; ++j) {
//
DLOG << " bias - " << j << bias->data<float>()[j];
//
}
//
// DLOG << " climage mean: " << *mean;
...
...
@@ -85,21 +85,21 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
for
(
int
j
=
0
;
j
<
C
;
++
j
)
{
DLOG
<<
" new scale - "
<<
j
<<
new_scale_ptr
[
j
];
}
for
(
int
j
=
0
;
j
<
C
;
++
j
)
{
DLOG
<<
" new bias - "
<<
j
<<
new_bias_ptr
[
j
];
}
//
for (int j = 0; j < C; ++j) {
//
DLOG << " new scale - " << j << new_scale_ptr[j];
//
}
//
//
for (int j = 0; j < C; ++j) {
//
DLOG << " new bias - " << j << new_bias_ptr[j];
//
}
new_scale
->
SetTensorData
(
new_scale_ptr
,
variance
->
dims
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
DLOG
<<
" climage - y bias: "
<<
*
(
param
->
Bias
());
DLOG
<<
" climage - new scale: "
<<
*
new_scale
;
//
DLOG << " climage - y bias: " << *(param->Bias());
//
//
DLOG << " climage - new scale: " << *new_scale;
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
...
...
@@ -107,9 +107,9 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
DLOG
<<
" climage - new bias: "
<<
*
new_bias
;
DLOG
<<
" climage - filter: "
<<
*
(
param
->
Filter
());
//
DLOG << " climage - new bias: " << *new_bias;
//
//
DLOG << " climage - filter: " << *(param->Filter());
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
...
...
@@ -237,7 +237,7 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
4f07b27a
...
...
@@ -118,7 +118,7 @@ void ConvAddKernel<GPU_CL, float>::Compute(
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
4f07b27a
...
...
@@ -155,7 +155,7 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m) {
DLOG
<<
" begin enqueue "
;
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
DLOG
<<
" end enqueue "
;
...
...
src/operators/kernel/cl/depthwise_conv_kernel.cpp
浏览文件 @
4f07b27a
...
...
@@ -77,7 +77,7 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
...
...
src/operators/kernel/cl/reshape_kernel.cpp
浏览文件 @
4f07b27a
...
...
@@ -36,9 +36,12 @@ void ReshapeKernel<GPU_CL, float>::Compute(const ReshapeParam<GPU_CL> ¶m) {
const
auto
&
outputDim
=
output
->
dims
();
int
dims
[
4
]
=
{
1
,
1
,
1
,
1
};
int
odims
[
4
]
=
{
1
,
1
,
1
,
1
};
// 1 1000 1 1
for
(
int
i
=
0
;
i
<
inputDim
.
size
();
i
++
)
{
dims
[
4
-
inputDim
.
size
()
+
i
]
=
inputDim
[
i
];
}
// 1 1 1 1000
for
(
int
i
=
0
;
i
<
outputDim
.
size
();
i
++
)
{
odims
[
4
-
outputDim
.
size
()
+
i
]
=
outputDim
[
i
];
}
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
4f07b27a
...
...
@@ -33,20 +33,41 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
auto
*
output
=
param
.
Out
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
auto
&
inputDim
=
input
->
dims
();
int
dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
inputDim
.
size
();
i
++
)
{
dims
[
4
-
inputDim
.
size
()
+
i
]
=
inputDim
[
i
];
}
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
dims
[
1
]);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
dims
[
2
]);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
dims
[
3
]);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
DLOG
<<
" softmax - output image dim "
<<
output
->
ImageDims
();
DLOG
<<
" softmax - output image tensor dim "
<<
output
->
dims
();
int
group
=
output
->
ImageWidth
();
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
group
);
CL_CHECK_ERRORS
(
status
);
// const auto &inputDim = input->dims();
//
// int dims[4] = {1, 1, 1, 1};
//
// for (int i = 0; i < inputDim.size(); i++) {
// dims[4 - inputDim.size() + i] = inputDim[i];
// }
//
// clSetKernelArg(kernel, 2, sizeof(int), &dims);
// clSetKernelArg(kernel, 3, sizeof(int), &dims[1]);
// clSetKernelArg(kernel, 4, sizeof(int), &dims[2]);
// clSetKernelArg(kernel, 5, sizeof(int), &dims[3]);
DLOG
<<
"default_work_size: "
<<
default_work_size
;
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
template
class
SoftmaxKernel
<
GPU_CL
,
float
>;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录