Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4ef5d5ec
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ef5d5ec
编写于
9月 22, 2020
作者:
L
Leonardo-Ding
提交者:
GitHub
9月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[arm]add benchmark ops for arm,test=develop (#4148)
上级
5dd5ed67
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
1664 addition
and
98 deletion
+1664
-98
lite/kernels/arm/fc_compute.cc
lite/kernels/arm/fc_compute.cc
+101
-17
lite/kernels/arm/fc_compute.h
lite/kernels/arm/fc_compute.h
+2
-81
lite/tests/CMakeLists.txt
lite/tests/CMakeLists.txt
+1
-0
lite/tests/benchmark/CMakeLists.txt
lite/tests/benchmark/CMakeLists.txt
+7
-0
lite/tests/benchmark/README.md
lite/tests/benchmark/README.md
+63
-0
lite/tests/benchmark/build_benchmark_ops.sh
lite/tests/benchmark/build_benchmark_ops.sh
+53
-0
lite/tests/benchmark/get_latency_lookup_table.py
lite/tests/benchmark/get_latency_lookup_table.py
+377
-0
lite/tests/benchmark/latency_lookup_table.txt
lite/tests/benchmark/latency_lookup_table.txt
+8
-0
lite/tests/benchmark/ops.txt
lite/tests/benchmark/ops.txt
+5
-0
lite/tests/benchmark/src/get_activation_latency.cc
lite/tests/benchmark/src/get_activation_latency.cc
+311
-0
lite/tests/benchmark/src/get_batchnorm_latency.cc
lite/tests/benchmark/src/get_batchnorm_latency.cc
+148
-0
lite/tests/benchmark/src/get_conv_latency.cc
lite/tests/benchmark/src/get_conv_latency.cc
+282
-0
lite/tests/benchmark/src/get_fc_latency.cc
lite/tests/benchmark/src/get_fc_latency.cc
+146
-0
lite/tests/benchmark/src/get_pooling_latency.cc
lite/tests/benchmark/src/get_pooling_latency.cc
+160
-0
未找到文件。
lite/kernels/arm/fc_compute.cc
浏览文件 @
4ef5d5ec
...
...
@@ -26,6 +26,88 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
template
<
typename
Dtype
>
void
naive_transpose
(
const
Dtype
*
din
,
Dtype
*
dout
,
int
m
,
int
n
)
{
int
k
=
0
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
j
=
0
;
j
<
m
;
++
j
)
{
dout
[
k
++
]
=
din
[
j
*
n
+
i
];
}
}
}
template
<
PrecisionType
PType
>
void
fc_trans_weights
(
const
Tensor
&
tin
,
Tensor
*
tout
);
template
<
>
void
fc_trans_weights
<
PRECISION
(
kFloat
)
>
(
const
Tensor
&
tin
,
Tensor
*
tout
)
{
CHECK_EQ
(
tin
.
dims
().
size
(),
2
)
<<
"fc weights size must = 2"
;
int
m
=
tin
.
dims
()[
0
];
int
n
=
tin
.
dims
()[
1
];
tout
->
Resize
({
n
,
m
});
auto
*
ptr_in
=
tin
.
data
<
float
>
();
auto
*
ptr_out
=
tout
->
mutable_data
<
float
>
();
naive_transpose
(
ptr_in
,
ptr_out
,
m
,
n
);
}
template
<
>
void
fc_trans_weights
<
PRECISION
(
kInt8
)
>
(
const
Tensor
&
tin
,
Tensor
*
tout
)
{
CHECK_EQ
(
tin
.
dims
().
size
(),
2
)
<<
"fc weights size must = 2"
;
int
m
=
tin
.
dims
()[
0
];
int
n
=
tin
.
dims
()[
1
];
tout
->
Resize
({
n
,
m
});
auto
*
ptr_in
=
tin
.
data
<
int8_t
>
();
auto
*
ptr_out
=
tout
->
mutable_data
<
int8_t
>
();
naive_transpose
(
ptr_in
,
ptr_out
,
m
,
n
);
}
template
<
PrecisionType
PType
,
PrecisionType
OutType
>
bool
check_fc_use_gemm
(
int
m
,
const
std
::
vector
<
float
>&
scale
,
bool
has_bias
)
{
return
m
>
1
;
}
template
<
>
bool
check_fc_use_gemm
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
(
int
m
,
const
std
::
vector
<
float
>&
scale
,
bool
has_bias
)
{
CHECK_GT
(
scale
.
size
(),
0
)
<<
"Int8 FC param must has weight_scale"
;
return
m
>
1
&&
scale
.
size
()
==
1
;
}
template
<
>
bool
check_fc_use_gemm
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
(
int
m
,
const
std
::
vector
<
float
>&
scale
,
bool
has_bias
)
{
CHECK_GT
(
scale
.
size
(),
0
)
<<
"Int8 FC param must has weight_scale"
;
return
m
>
1
&&
scale
.
size
()
==
1
&&
!
has_bias
;
}
template
<
PrecisionType
PType
,
PrecisionType
OutType
>
void
FcCompute
<
PType
,
OutType
>::
ReInitWhenNeeded
()
{
auto
&
param
=
this
->
template
Param
<
operators
::
FcParam
>();
auto
x_dims
=
param
.
input
->
dims
();
if
(
last_shape_
==
x_dims
)
{
return
;
}
last_shape_
=
x_dims
;
auto
w_dims
=
param
.
w
->
dims
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
CHECK_GE
(
x_dims
.
size
(),
2UL
);
CHECK_EQ
(
w_dims
.
size
(),
2UL
);
CHECK_GE
(
param
.
output
->
dims
().
size
(),
2UL
);
m_
=
x_dims
.
Slice
(
0
,
param
.
in_num_col_dims
).
production
();
k_
=
x_dims
.
Slice
(
param
.
in_num_col_dims
,
x_dims
.
size
()).
production
();
CHECK_EQ
(
k_
,
w_dims
[
0
]);
n_
=
w_dims
[
1
];
CHECK_EQ
(
k_
,
static_cast
<
int
>
(
w_dims
[
0
]));
flag_gemm_
=
check_fc_use_gemm
<
PType
,
OutType
>
(
m_
,
param
.
weight_scale
,
param
.
bias
!=
nullptr
);
if
(
!
flag_trans_weights_
&&
!
flag_gemm_
)
{
flag_trans_weights_
=
true
;
fc_trans_weights
<
PType
>
(
*
param
.
w
,
&
weights_
);
}
}
/// for fp32 kernel
template
<
>
void
FcCompute
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>::
PrepareForRun
()
{
...
...
@@ -71,8 +153,8 @@ void FcCompute<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
/// update bias
if
(
param
.
bias
)
{
bias_
.
Resize
(
param
.
bias
->
dims
());
auto
ptr
=
bias_
.
mutable_data
<
float
>
();
auto
ptr_in
=
bias_
.
data
<
float
>
();
auto
*
ptr
=
bias_
.
mutable_data
<
float
>
();
auto
*
ptr_in
=
bias_
.
data
<
float
>
();
float
out_scale
=
param
.
output_scale
;
for
(
int
i
=
0
;
i
<
bias_
.
numel
();
++
i
)
{
ptr
[
i
]
=
ptr_in
[
i
]
/
out_scale
;
...
...
@@ -86,9 +168,9 @@ void FcCompute<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
auto
&
param
=
this
->
Param
<
operators
::
FcParam
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
auto
i_data
=
param
.
input
->
data
<
float
>
();
auto
o_data
=
param
.
output
->
mutable_data
<
float
>
();
auto
w_data
=
param
.
w
->
data
<
float
>
();
auto
*
i_data
=
param
.
input
->
data
<
float
>
();
auto
*
o_data
=
param
.
output
->
mutable_data
<
float
>
();
auto
*
w_data
=
flag_gemm_
?
param
.
w
->
data
<
float
>
()
:
weights_
.
data
<
float
>
();
const
float
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
if
(
flag_trans_bias_
)
{
b_data
=
bias_
.
data
<
float
>
();
...
...
@@ -125,8 +207,8 @@ void FcCompute<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
}
}
else
{
for
(
int
i
=
0
;
i
<
m_
;
++
i
)
{
auto
i_data_batch
=
i_data
+
i
*
k_
;
auto
o_data_batch
=
o_data
+
i
*
n_
;
auto
*
i_data_batch
=
i_data
+
i
*
k_
;
auto
*
o_data_batch
=
o_data
+
i
*
n_
;
lite
::
arm
::
math
::
sgemv
(
w_data
,
i_data_batch
,
o_data_batch
,
...
...
@@ -147,9 +229,10 @@ void FcCompute<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
auto
&
param
=
this
->
Param
<
operators
::
FcParam
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
auto
i_data
=
param
.
input
->
data
<
int8_t
>
();
auto
o_data
=
param
.
output
->
mutable_data
<
float
>
();
auto
w_data
=
param
.
w
->
data
<
int8_t
>
();
auto
*
i_data
=
param
.
input
->
data
<
int8_t
>
();
auto
*
o_data
=
param
.
output
->
mutable_data
<
float
>
();
auto
*
w_data
=
flag_trans_weights_
?
weights_
.
data
<
int8_t
>
()
:
param
.
w
->
data
<
int8_t
>
();
const
float
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
if
(
flag_trans_bias_
)
{
b_data
=
bias_
.
data
<
float
>
();
...
...
@@ -182,8 +265,8 @@ void FcCompute<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
}
}
else
{
for
(
int
i
=
0
;
i
<
m_
;
++
i
)
{
auto
i_data_batch
=
i_data
+
i
*
k_
;
auto
o_data_batch
=
o_data
+
i
*
n_
;
auto
*
i_data_batch
=
i_data
+
i
*
k_
;
auto
*
o_data_batch
=
o_data
+
i
*
n_
;
lite
::
arm
::
math
::
gemv_int8
(
w_data
,
i_data_batch
,
o_data_batch
,
...
...
@@ -205,9 +288,10 @@ void FcCompute<PRECISION(kInt8), PRECISION(kInt8)>::Run() {
auto
&
param
=
this
->
Param
<
operators
::
FcParam
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
auto
i_data
=
param
.
input
->
data
<
int8_t
>
();
auto
o_data
=
param
.
output
->
mutable_data
<
int8_t
>
();
auto
w_data
=
param
.
w
->
data
<
int8_t
>
();
auto
*
i_data
=
param
.
input
->
data
<
int8_t
>
();
auto
*
o_data
=
param
.
output
->
mutable_data
<
int8_t
>
();
auto
*
w_data
=
flag_trans_weights_
?
weights_
.
data
<
int8_t
>
()
:
param
.
w
->
data
<
int8_t
>
();
const
float
*
b_data
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
if
(
flag_trans_bias_
)
{
b_data
=
bias_
.
data
<
float
>
();
...
...
@@ -240,8 +324,8 @@ void FcCompute<PRECISION(kInt8), PRECISION(kInt8)>::Run() {
&
ctx
);
}
else
{
for
(
int
i
=
0
;
i
<
m_
;
++
i
)
{
auto
i_data_batch
=
i_data
+
i
*
k_
;
auto
o_data_batch
=
o_data
+
i
*
n_
;
auto
*
i_data_batch
=
i_data
+
i
*
k_
;
auto
*
o_data_batch
=
o_data
+
i
*
n_
;
lite
::
arm
::
math
::
gemv_int8
(
w_data
,
i_data_batch
,
o_data_batch
,
...
...
lite/kernels/arm/fc_compute.h
浏览文件 @
4ef5d5ec
...
...
@@ -24,92 +24,12 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
template
<
typename
Dtype
>
void
naive_transpose
(
const
Dtype
*
din
,
Dtype
*
dout
,
int
m
,
int
n
)
{
int
k
=
0
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
j
=
0
;
j
<
m
;
++
j
)
{
dout
[
k
++
]
=
din
[
j
*
n
+
i
];
}
}
}
template
<
PrecisionType
PType
>
void
fc_trans_weights
(
const
Tensor
&
tin
,
Tensor
*
tout
);
template
<
>
void
fc_trans_weights
<
PRECISION
(
kFloat
)
>
(
const
Tensor
&
tin
,
Tensor
*
tout
)
{
CHECK_EQ
(
tin
.
dims
().
size
(),
2
)
<<
"fc weights size must = 2"
;
int
m
=
tin
.
dims
()[
0
];
int
n
=
tin
.
dims
()[
1
];
tout
->
Resize
({
n
,
m
});
auto
ptr_in
=
tin
.
data
<
float
>
();
auto
ptr_out
=
tout
->
mutable_data
<
float
>
();
naive_transpose
(
ptr_in
,
ptr_out
,
m
,
n
);
}
template
<
>
void
fc_trans_weights
<
PRECISION
(
kInt8
)
>
(
const
Tensor
&
tin
,
Tensor
*
tout
)
{
CHECK_EQ
(
tin
.
dims
().
size
(),
2
)
<<
"fc weights size must = 2"
;
int
m
=
tin
.
dims
()[
0
];
int
n
=
tin
.
dims
()[
1
];
tout
->
Resize
({
n
,
m
});
auto
ptr_in
=
tin
.
data
<
int8_t
>
();
auto
ptr_out
=
tout
->
mutable_data
<
int8_t
>
();
naive_transpose
(
ptr_in
,
ptr_out
,
m
,
n
);
}
template
<
PrecisionType
PType
,
PrecisionType
OutType
>
bool
check_fc_use_gemm
(
int
m
,
const
std
::
vector
<
float
>&
scale
,
bool
has_bias
)
{
return
m
>
1
;
}
template
<
>
bool
check_fc_use_gemm
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
(
int
m
,
const
std
::
vector
<
float
>&
scale
,
bool
has_bias
)
{
CHECK
(
scale
.
size
()
>
0
)
<<
"Int8 FC param must has weight_scale"
;
return
m
>
1
&&
scale
.
size
()
==
1
;
}
template
<
>
bool
check_fc_use_gemm
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
(
int
m
,
const
std
::
vector
<
float
>&
scale
,
bool
has_bias
)
{
CHECK
(
scale
.
size
()
>
0
)
<<
"Int8 FC param must has weight_scale"
;
return
m
>
1
&&
scale
.
size
()
==
1
&&
!
has_bias
;
}
template
<
PrecisionType
PType
,
PrecisionType
OutType
>
class
FcCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PType
>
{
public:
using
param_t
=
operators
::
FcParam
;
virtual
void
ReInitWhenNeeded
()
{
auto
&
param
=
this
->
template
Param
<
operators
::
FcParam
>();
auto
x_dims
=
param
.
input
->
dims
();
if
(
last_shape_
==
x_dims
)
{
return
;
}
last_shape_
=
x_dims
;
auto
w_dims
=
param
.
w_dims
;
auto
&
ctx
=
this
->
ctx_
->
template
As
<
ARMContext
>();
CHECK_GE
(
x_dims
.
size
(),
2UL
);
CHECK_EQ
(
w_dims
.
size
(),
2UL
);
CHECK_GE
(
param
.
output
->
dims
().
size
(),
2UL
);
m_
=
x_dims
.
Slice
(
0
,
param
.
in_num_col_dims
).
production
();
k_
=
x_dims
.
Slice
(
param
.
in_num_col_dims
,
x_dims
.
size
()).
production
();
n_
=
w_dims
[
1
];
flag_gemm_
=
check_fc_use_gemm
<
PType
,
OutType
>
(
m_
,
param
.
weight_scale
,
param
.
bias
!=
nullptr
);
if
(
flag_trans_weights_
==
flag_gemm_
)
{
flag_trans_weights_
=
!
flag_trans_weights_
;
Tensor
tmp_tensor
;
fc_trans_weights
<
PType
>
(
*
param
.
w
,
&
tmp_tensor
);
param
.
w
->
CopyDataFrom
(
tmp_tensor
);
}
}
virtual
void
ReInitWhenNeeded
();
virtual
void
PrepareForRun
();
virtual
void
Run
();
...
...
@@ -117,6 +37,7 @@ class FcCompute : public KernelLite<TARGET(kARM), PType> {
private:
DDim
last_shape_
;
Tensor
weights_
;
Tensor
bias_
;
bool
flag_trans_weights_
{
false
};
bool
flag_trans_bias_
{
false
};
...
...
lite/tests/CMakeLists.txt
浏览文件 @
4ef5d5ec
...
...
@@ -3,3 +3,4 @@ add_subdirectory(math)
add_subdirectory
(
cv
)
add_subdirectory
(
cv/anakin
)
add_subdirectory
(
api
)
add_subdirectory
(
benchmark
)
lite/tests/benchmark/CMakeLists.txt
0 → 100644
浏览文件 @
4ef5d5ec
if
((
NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_MLU AND NOT LITE_WITH_XPU
)
AND
(
LITE_WITH_ARM
))
lite_cc_test
(
get_conv_latency SRCS src/get_conv_latency.cc DEPS arena_framework
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
get_batchnorm_latency SRCS src/get_batchnorm_latency.cc DEPS
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
get_pooling_latency SRCS src/get_pooling_latency.cc DEPS
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
get_fc_latency SRCS src/get_fc_latency.cc DEPS
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
get_activation_latency SRCS src/get_activation_latency.cc DEPS
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
endif
()
lite/tests/benchmark/README.md
0 → 100644
浏览文件 @
4ef5d5ec
# 运行方式
```
shell
--
cd
Paddle-Lite/lite/tests/benchmark
--
./build_benchmark_ops.sh
#把build目录下的所有单测可执行文件push到手机上
在build_benchmark_ops.sh中运行python get_latency_lookup_table.py
--ops_path
ops.txt
--latency_lookup_table_path
latency_lookup_table.txt
其中ops.txt是输入的网络模型文件, latency_lookup_table.txt是执行lite单测后输出的网络op耗时信息文件。
```
# 输入ops.txt格式说明
-- op_name [dim0 dim1 dim2 dim3] (op_param0, op_param1, ..., dtype=xxx)
ops.txt每一行有三个字段,第一个字段是op_name, 第二个字段是输入Tensor的input_dims,
第三个字段用()括起来,描述该op的parameter.
# 注意: 每一个字段之间是以tab来分割的,parameter内的子字段是以逗号来分割的,
# 描述tensor维度的[]内的数据之间以空格来分割,不能加逗号和tab.
op_name现支持取值为conv/activation/batchnorm/pooling/fc;
input_dims描述的是输入tensor格式,支持NCHW 4D等Tensor格式;
op_param0,op_param1等字段描述该op的param属性,比如conv op包含ch_out/stride/group/kernel/pad/dilation/flag_bias/flag_act等属性;
dtype描述该层op使用的数据类型,支持的合法输入为float/int8_float/int8_int8, 现在conv支持三种数据类型,其他op只支持float一种数据类型.
# conv op格式
conv [1 96 112 112] (ch_out=48, stride=1, group=1, kernel=1x1, pad=0, dilation=1, flag_bias=0, flag_act=0, dtype=float)
ch_out表示输出channel值, kernel表示卷积核size, 支持的合法取值为1x1/3x3/5x5等, pad表示边界padding的取值, flag_bias表示是否有bias, flag_act表示是否融合激活函数,支持的合法取值为0/1/2/4.
# activitation op格式
activation [1 8 64 64] (act_type=relu)
act_type表示激活函数类型,合法取值为relu/relu6/leaky_relu/tanh/swish/exp/abs/hard_swish/reciprocal/threshold_relu.
# batchnorm op格式
batchnorm [1 8 64 64] (epsilon=1e-4f, momentum=0.9f)
epsilon表示batchnorm的epsilon参数取值, 默认值为1e-4f;
momentum表示batchnorm的momentum参数取值, 默认值为0.9f.
# pooling op格式
pooling [1 8 64 64] (stride=2, pad=0, kernel=2x2, ceil_mode=0, flag_global=0, exclusive=1, pooling_type=max)
stride表示pooling操作的跨度,默认值取2;pad表示边界padding的取值,默认值取0;
kernel表示pooling卷积核size, 常见取值为2x2(默认值);
ceil_mode表示pooling是否进行ceil操作,=0表示false(默认值),否则表示为true;
flag_global表示pooling是否在WxH维度进行全局操作,=0表示false(默认值),否则表示为true;
exclusive表示pooling操作时的exclusive取值,=1表示true(默认值),否则表示为false;
pooling_type表示pooling类型,合法取值为max(默认值)/avg.
# fc op格式
fc [1 64] (flag_bias=1, param_dim=64x1000)
flag_bias表示fc op是否有bias,=1(默认值)表示为true, 否则为false;
param_dim表示fc op
`k x n`
的操作维度信息,其中k应与input_dims=[m k]中的k取值保持一致.
# 输出latency_lookup_table.txt格式说明
dev_info core_num thread_num power_mode core0 arch core1 arch core2 arch core3 arch core4 arch core5 arch core6 arch core7 arch
Hisilicon Kirin980 8 1 0 ARM_A55 ARM_A55 ARM_A55 ARM_A55 ARM_A76 ARM_A76 ARM_A76 ARM_A76
op_name input_dims output_dims param_info min_latency(ms) max_latency(ms) avg_latency(ms)
conv [1 96 112 112] [1 48 114 114] (ch_out=48, stride=1, pad=0, kernel=1x1, group=1, dilation=1, flag_bias=0, flag_act=0, dtype=float) 3.469 4.111 3.52088
fc [1 64] [64 1000] (param_dim=64x1000, flag_bias=1, dtype=float) 0.135 0.176 0.13779
batchnorm [1 8 64 64] [1 8 64 64] (epsilon=1e-4f, momentum=0.9f, dtype=float) 0.014 0.178 0.01679
pooling [1 8 64 64] [1 8 32 32] (stride=2, pad=0, kernel=2x2, ceil_mode=0, flag_global=0, exclusive=0, pooling_type=avg, dtype=float) 0.009 0.011 0.00983
activation [1 8 64 64] [1 8 64 64] (act_type=relu, dtype=float) 0.01 0.036 0.01103
-- 第一栏为header信息栏, 包含
`dev_info`
`arm_v7/v8`
`core_num`
`thread_num`
`power_mode`
`core0 arch`
...
`core7 arch`
字段:
`dev_info`
表示手机hardware厂家型号信息,
`arm_v7/v8`
表示armv7还是armv8架构,
`core_num`
表示cpu核心数,
`thread_num`
表示设置的运行多线程数,
`power_mode`
表示cpu绑核方式,
`core0 arch`
...
`core7 arch`
表示arm cpu架构信息
第二栏为op信息栏, 包含
`op_name`
`input_dims`
`output_dims`
`param_info`
`min_latency`
`max_latency`
`avg_latency`
字段:
其中
`output_dims`
为该层op根据
`input_dims`
和
`param_info`
计算得到的输出tensor维度信息;
`min_latency(ms)`
`max_latency(ms)`
`avg_latency(ms)`
为该层op运行得到的min/max/avg耗时信息.
lite/tests/benchmark/build_benchmark_ops.sh
0 → 100755
浏览文件 @
4ef5d5ec
#!/usr/bin/env bash
exe_dir
=
"/data/local/tmp/bin"
work_dir
=
$(
pwd
)
os
=
android
abi
=
armv8
lang
=
gcc
function
print_usage
{
echo
"----------------------------------------"
echo
-e
" ./push2device.sh --arm_os=<os> --arm_abi=<abi> --arm_lang=<lang>"
echo
-e
"--arm_os:
\t
android, only support android now"
echo
-e
"--arm_abi:
\t
armv8|armv7"
echo
-e
"--arm_lang:
\t
gcc|clang"
echo
-e
"make sure directory: PaddleLite/build.lite.
${
arm_os
}
.
${
arm_abi
}
.
${
arm_lang
}
exsits!"
echo
"----------------------------------------"
}
function
main
{
for
i
in
"
$@
"
;
do
case
$i
in
--arm_os
=
*
)
os
=
"
${
i
#*=
}
"
shift
;;
--arm_abi
=
*
)
abi
=
"
${
i
#*=
}
"
shift
;;
--arm_lang
=
*
)
lang
=
"
${
i
#*=
}
"
shift
;;
*
)
print_usage
exit
1
;;
esac
done
build_dir
=
$work_dir
/../../../build.lite.
${
os
}
.
${
abi
}
.
${
lang
}
lib_path
=
$build_dir
/lite/tests/benchmark
lib_files
=
$lib_path
/get
*
latency
adb shell
mkdir
${
exe_dir
}
for
file
in
${
lib_files
}
do
adb push
${
file
}
${
exe_dir
}
done
}
main
$@
python get_latency_lookup_table.py
--arm_v7_v8
${
abi
}
lite/tests/benchmark/get_latency_lookup_table.py
0 → 100644
浏览文件 @
4ef5d5ec
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
import
re
import
argparse
import
subprocess
def
get_args
():
"""Get arguments.
Returns:
Namespace, arguments.
"""
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--ops_path'
,
default
=
'ops.txt'
,
help
=
'Input ops path.'
)
parser
.
add_argument
(
'--latency_lookup_table_path'
,
default
=
'latency_lookup_table.txt'
,
help
=
'Output ops latency path.'
)
parser
.
add_argument
(
'--platform'
,
default
=
'android'
,
help
=
'Platform: android/ios/custom.'
)
parser
.
add_argument
(
'--threads'
,
type
=
int
,
default
=
1
,
help
=
'Threads.'
)
parser
.
add_argument
(
'--power_mode'
,
type
=
int
,
default
=
0
,
help
=
'PowerMode.'
)
parser
.
add_argument
(
'--warmup_times'
,
type
=
int
,
default
=
5
,
help
=
'Warm up times of op when estimating latency.'
)
parser
.
add_argument
(
'--repeats_times'
,
type
=
int
,
default
=
100
,
help
=
'Running times of op when estimating latency.'
)
parser
.
add_argument
(
'--arm_v7_v8'
,
type
=
str
,
default
=
'armv8'
,
help
=
'Indicate arm architecture v7 or v8.'
)
args
=
parser
.
parse_args
()
return
args
def
check_dev_connect
():
cmd
=
'adb devices | grep device'
dev_info
=
subprocess
.
Popen
(
cmd
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
shell
=
True
)
out
=
dev_info
.
communicate
()[
0
]
res
=
out
.
decode
().
find
(
"
\t
device"
)
if
res
==
-
1
:
print
(
"No android device is attached"
)
sys
.
exit
()
def
get_dev_info
():
cmd
=
'adb shell "cat /proc/cpuinfo | grep Hardware"'
dev_info
=
subprocess
.
Popen
(
cmd
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
shell
=
True
)
out
=
dev_info
.
communicate
()[
0
]
out
=
out
.
decode
().
strip
(
'
\n
'
)
dev_info
=
out
.
strip
(
'Hardware
\t
:'
).
strip
()
cmd
=
'adb shell "cat /proc/cpuinfo | grep part"'
cpu_info
=
subprocess
.
Popen
(
cmd
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
shell
=
True
)
out
=
cpu_info
.
communicate
()[
0
]
out
=
(
out
.
decode
().
strip
(
'
\n
'
).
split
(
'
\n
'
))
core_num
=
len
(
out
)
arch_type
=
[
'UNKNOWN CPU ARCH'
]
*
core_num
for
i
,
v
in
enumerate
(
out
):
out
=
v
.
strip
(
'CPU part'
).
strip
().
strip
(
':'
).
strip
()
if
out
==
'0xd03'
:
arch_type
[
i
]
=
'ARM_A53'
elif
out
==
'0xd05'
:
arch_type
[
i
]
=
'ARM_A55'
elif
out
==
'0xd07'
:
arch_type
[
i
]
=
'ARM_A57'
elif
out
==
'0xd08'
:
arch_type
[
i
]
=
'ARM_A72'
elif
out
==
'0xd09'
:
arch_type
[
i
]
=
'ARM_A73'
elif
out
==
'0xd0a'
:
arch_type
[
i
]
=
'ARM_A75'
elif
out
==
'0xd40'
:
arch_type
[
i
]
=
'ARM_A76'
elif
out
==
'0x804'
:
# 855
arch_type
[
i
]
=
'ARM_A76'
elif
out
==
'0x805'
:
# 855
arch_type
[
i
]
=
'ARM_A55'
elif
out
==
'0x802'
:
# 845
arch_type
[
i
]
=
'ARM_A75'
elif
out
==
'0x803'
:
# 845
arch_type
[
i
]
=
'ARM_A55'
elif
out
==
'0x801'
:
# 835
arch_type
[
i
]
=
'ARM_A73'
elif
out
==
'0x800'
:
# 835
arch_type
[
i
]
=
'ARM_A73'
elif
out
==
'0x205'
:
# 820
arch_type
[
i
]
=
'ARM_A72'
else
:
arch_type
[
i
]
=
'UNKNOWN CPU ARCH'
return
dev_info
,
core_num
,
arch_type
def
get_op_latency
(
op
,
platform
):
"""Get model latency.
Args:
op: list, a list of str represents the op and its parameters.
platform: str, platform name.
Returns:
float, op latency.
"""
if
platform
==
'android'
:
commands
=
'adb shell "cd /data/local/tmp/bin && ./get_{}_latency {}"'
.
format
(
op
[
0
],
' '
.
join
(
op
[
1
:]))
proc
=
subprocess
.
Popen
(
commands
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
shell
=
True
)
out
=
proc
.
communicate
()[
0
]
avg_out
=
[
_
for
_
in
out
.
decode
().
split
(
'
\n
'
)
if
'Avg Latency'
in
_
][
-
1
]
avg_out
=
re
.
findall
(
r
'\d+\.?\d*'
,
avg_out
)[
0
]
avg_out
=
float
(
avg_out
)
min_out
=
[
_
for
_
in
out
.
decode
().
split
(
'
\n
'
)
if
'Min Latency'
in
_
][
-
1
]
min_out
=
re
.
findall
(
r
'\d+\.?\d*'
,
min_out
)[
0
]
min_out
=
float
(
min_out
)
max_out
=
[
_
for
_
in
out
.
decode
().
split
(
'
\n
'
)
if
'Max Latency'
in
_
][
-
1
]
max_out
=
re
.
findall
(
r
'\d+\.?\d*'
,
max_out
)[
0
]
max_out
=
float
(
max_out
)
elif
platform
==
'ios'
:
print
(
'ios platform is not supported now'
)
sys
.
exit
()
else
:
print
(
'Please define `get_op_latency` for {} platform'
.
format
(
platform
))
sys
.
exit
()
return
avg_out
,
min_out
,
max_out
def
main
():
args
=
get_args
()
check_dev_connect
()
conv_param_dict
=
{
'ch_out'
:
'1'
,
'stride'
:
'[1 1]'
,
'pad'
:
'[0 0 0 0]'
,
'kernel'
:
'3x3'
,
'group'
:
'1'
,
'dilation'
:
'[1 1]'
,
'flag_bias'
:
'1'
,
'flag_act'
:
'0'
,
'dtype'
:
'float'
}
batchnorm_param_dict
=
{
'epsilon'
:
'1e-4f'
,
'momentum'
:
'0.9f'
,
'dtype'
:
'float'
}
pooling_param_dict
=
{
'stride'
:
'2'
,
'pad'
:
'0'
,
'kernel'
:
'2x2'
,
'ceil_mode'
:
'0'
,
'flag_global'
:
'0'
,
'exclusive'
:
'1'
,
'pooling_type'
:
'max'
,
'dtype'
:
'float'
}
activation_param_dict
=
{
'act_type'
:
'relu'
,
'dtype'
:
'float'
}
fc_param_dict
=
{
'param_dim'
:
'1x1'
,
'flag_bias'
:
'1'
,
'dtype'
:
'float'
}
op_info
=
{}
cur_op_name
=
''
cur_param_dict
=
{}
input_dims
=
''
output_dims
=
''
runtime_cmd
=
[]
fid
=
open
(
args
.
ops_path
,
'r'
)
handle
=
open
(
args
.
latency_lookup_table_path
,
'w'
)
handle
.
write
(
'{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\n
'
.
format
(
'dev_info'
.
ljust
(
30
),
'armv7/v8'
.
ljust
(
10
),
'core_num'
.
ljust
(
10
),
'thread_num'
.
ljust
(
10
),
'power_mode'
.
ljust
(
10
),
'core0 arch'
.
ljust
(
10
),
'core1 arch'
.
ljust
(
10
),
'core2 arch'
.
ljust
(
10
),
'core3 arch'
.
ljust
(
10
),
'core4 arch'
.
ljust
(
10
),
'core5 arch'
.
ljust
(
10
),
'core6 arch'
.
ljust
(
10
),
'core7 arch'
.
ljust
(
10
)))
dev_info
,
core_num
,
arch_type
=
get_dev_info
()
handle
.
write
(
'{}
\t
{}
\t
{}
\t
{}'
.
format
(
dev_info
.
ljust
(
30
),
str
(
args
.
arm_v7_v8
).
ljust
(
10
),
str
(
core_num
).
ljust
(
10
),
str
(
args
.
threads
).
ljust
(
10
),
str
(
args
.
power_mode
).
ljust
(
10
)))
for
i
in
arch_type
:
handle
.
write
(
'
\t
{}'
.
format
(
i
).
ljust
(
10
))
handle
.
write
(
'
\n
'
)
handle
.
write
(
'{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\n
'
.
format
(
'op_name'
.
ljust
(
10
),
'input_dims'
.
ljust
(
10
),
'output_dims'
.
ljust
(
10
),
'param_info'
.
ljust
(
80
),
'min_latency(ms)'
.
ljust
(
10
),
'max_latency(ms)'
.
ljust
(
10
),
'avg_latency(ms)'
.
ljust
(
10
)))
for
line
in
fid
.
readlines
():
line
=
[
line
.
strip
(
'
\n
'
)]
for
data_item
in
line
:
data_item
=
data_item
.
strip
().
split
(
'
\t
'
)
cur_op_name
=
data_item
[
0
]
input_dims
=
data_item
[
1
]
parameters
=
data_item
[
2
].
strip
(
'( )'
).
split
(
','
)
for
item_
in
parameters
:
item_
=
item_
.
strip
().
split
(
'='
)
# conv op dict
if
cur_op_name
==
'conv'
:
cur_param_dict
=
conv_param_dict
if
item_
[
0
]
==
'ch_out'
:
cur_param_dict
[
'ch_out'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'stride'
:
cur_param_dict
[
'stride'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'pad'
:
cur_param_dict
[
'pad'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'kernel'
:
cur_param_dict
[
'kernel'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'group'
:
cur_param_dict
[
'group'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'dilation'
:
cur_param_dict
[
'dilation'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'flag_bias'
:
cur_param_dict
[
'flag_bias'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'flag_act'
:
cur_param_dict
[
'flag_act'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'dtype'
:
cur_param_dict
[
'dtype'
]
=
item_
[
1
]
#batchnorm op dict
elif
cur_op_name
==
'batchnorm'
:
cur_param_dict
=
batchnorm_param_dict
if
item_
[
0
]
==
'epsilon'
:
cur_param_dict
[
'epsilon'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'momentum'
:
cur_param_dict
[
'momentum'
]
=
item_
[
1
]
#pooling op dict
elif
cur_op_name
==
'pooling'
:
cur_param_dict
=
pooling_param_dict
if
item_
[
0
]
==
'stride'
:
cur_param_dict
[
'stride'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'pad'
:
cur_param_dict
[
'pad'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'kernel'
:
cur_param_dict
[
'kernel'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'ceil_mode'
:
cur_param_dict
[
'ceil_mode'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'flag_global'
:
cur_param_dict
[
'flag_global'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'exclusive'
:
cur_param_dict
[
'exclusive'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'pooling_type'
:
cur_param_dict
[
'pooling_type'
]
=
item_
[
1
]
#activation op dict
elif
cur_op_name
==
'activation'
:
cur_param_dict
=
activation_param_dict
if
item_
[
0
]
==
'act_type'
:
cur_param_dict
[
'act_type'
]
=
item_
[
1
]
# fc op dict
elif
cur_op_name
==
'fc'
:
cur_param_dict
=
fc_param_dict
if
item_
[
0
]
==
'param_dim'
:
cur_param_dict
[
'param_dim'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'flag_bias'
:
cur_param_dict
[
'flag_bias'
]
=
item_
[
1
]
elif
item_
[
0
]
==
'dtype'
:
cur_param_dict
[
'dtype'
]
=
'float'
op_info
[
cur_op_name
]
=
cur_param_dict
if
cur_op_name
==
'conv'
:
batch
=
input_dims
.
strip
(
'['
']'
).
split
()[
0
]
in_ch
=
input_dims
.
strip
(
'['
']'
).
split
()[
1
]
height
=
input_dims
.
strip
(
'['
']'
).
split
()[
2
]
width
=
input_dims
.
strip
(
'['
']'
).
split
()[
3
]
out_ch
=
cur_param_dict
[
'ch_out'
]
pad_top
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
0
]
pad_bottom
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
1
]
pad_left
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
2
]
pad_right
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
0
]
dila_h
=
cur_param_dict
[
'dilation'
].
strip
(
'['
']'
).
split
()[
0
]
dila_w
=
cur_param_dict
[
'dilation'
].
strip
(
'['
']'
).
split
()[
1
]
kernel_h
=
cur_param_dict
[
'kernel'
][
0
]
kernel_w
=
cur_param_dict
[
'kernel'
][
2
]
stride_h
=
cur_param_dict
[
'stride'
].
strip
(
'['
']'
).
split
()[
0
]
stride_w
=
cur_param_dict
[
'stride'
].
strip
(
'['
']'
).
split
()[
1
]
hout
=
(
int
(
height
)
+
int
(
pad_top
)
+
int
(
pad_bottom
)
-
int
(
dila_h
)
*
(
int
(
kernel_h
)
-
1
)
+
1
)
/
int
(
stride_h
)
+
1
wout
=
(
int
(
width
)
+
int
(
pad_left
)
+
int
(
pad_right
)
-
int
(
dila_w
)
*
(
int
(
kernel_w
)
-
1
)
+
1
)
/
int
(
stride_w
)
+
1
output_dims
=
'['
+
str
(
batch
)
+
' '
+
str
(
out_ch
)
+
' '
+
str
(
int
(
hout
))
+
' '
+
str
(
int
(
wout
))
+
']'
dtype
=
0
if
cur_param_dict
[
'dtype'
]
==
'float'
:
dtype
=
0
elif
cur_param_dict
[
'dtype'
]
==
'int8_float'
:
dtype
=
1
elif
cur_param_dict
[
'dtype'
]
==
'int8_int8'
:
dtype
=
2
runtime_cmd
=
[
str
(
batch
),
str
(
in_ch
),
str
(
height
),
str
(
width
),
str
(
out_ch
),
str
(
cur_param_dict
[
'group'
]),
str
(
cur_param_dict
[
'kernel'
])[
0
],
str
(
pad_top
),
str
(
pad_bottom
),
str
(
pad_left
),
str
(
pad_right
),
str
(
stride_h
),
str
(
stride_w
),
str
(
dila_h
),
str
(
dila_w
),
str
(
cur_param_dict
[
'flag_bias'
]),
str
(
cur_param_dict
[
'flag_act'
]),
str
(
dtype
)]
elif
cur_op_name
==
'batchnorm'
:
batch
=
input_dims
.
strip
(
'['
']'
).
split
()[
0
]
in_ch
=
input_dims
.
strip
(
'['
']'
).
split
()[
1
]
height
=
input_dims
.
strip
(
'['
']'
).
split
()[
2
]
width
=
input_dims
.
strip
(
'['
']'
).
split
()[
3
]
output_dims
=
input_dims
runtime_cmd
=
[
str
(
batch
),
str
(
in_ch
),
str
(
height
),
str
(
width
),
str
(
cur_param_dict
[
'epsilon'
]),
str
(
cur_param_dict
[
'momentum'
])]
elif
cur_op_name
==
'pooling'
:
batch
=
input_dims
.
strip
(
'['
']'
).
split
()[
0
]
in_ch
=
input_dims
.
strip
(
'['
']'
).
split
()[
1
]
height
=
input_dims
.
strip
(
'['
']'
).
split
()[
2
]
width
=
input_dims
.
strip
(
'['
']'
).
split
()[
3
]
hout
=
1
wout
=
1
pad_top
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
0
]
pad_bottom
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
1
]
pad_left
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
2
]
pad_right
=
cur_param_dict
[
'pad'
].
strip
(
'['
']'
).
split
()[
3
]
kernel_h
=
cur_param_dict
[
'kernel'
][
0
]
kernel_w
=
cur_param_dict
[
'kernel'
][
2
]
stride_h
=
cur_param_dict
[
'stride'
].
strip
(
'['
']'
).
split
()[
0
]
stride_w
=
cur_param_dict
[
'stride'
].
strip
(
'['
']'
).
split
()[
1
]
if
cur_param_dict
[
'flag_global'
]
==
'0'
:
if
cur_param_dict
[
'ceil_mode'
]
==
'0'
:
hout
=
(
int
(
height
)
-
int
(
kernel_h
)
+
int
(
pad_top
)
+
int
(
pad_bottom
))
/
int
(
stride_h
)
+
1
wout
=
(
int
(
width
)
-
int
(
kernel_w
)
+
int
(
pad_left
)
+
int
(
pad_right
))
/
int
(
stride_w
)
+
1
else
:
hout
=
(
int
(
height
)
-
int
(
kernel_h
)
+
int
(
pad_top
)
+
int
(
pad_bottom
)
+
int
(
stride_h
)
-
1
)
/
int
(
stride_h
)
+
1
wout
=
(
int
(
width
)
-
int
(
kernel_w
)
+
int
(
pad_left
)
+
int
(
pad_right
)
+
int
(
stride_w
)
-
1
)
/
int
(
stride_w
)
+
1
output_dims
=
'['
+
batch
+
' '
+
str
(
in_ch
)
+
' '
+
str
(
int
(
hout
))
+
' '
+
str
(
int
(
wout
))
+
']'
pooling_type
=
0
if
cur_param_dict
[
'pooling_type'
]
==
'max'
:
pooling_type
=
0
else
:
pooling_type
=
1
runtime_cmd
=
[
str
(
batch
),
str
(
in_ch
),
str
(
height
),
str
(
width
),
str
(
stride_h
),
str
(
stride_w
),
str
(
pad_top
),
str
(
pad_bottom
),
str
(
pad_left
),
str
(
pad_right
),
str
(
cur_param_dict
[
'kernel'
])[
0
],
str
(
cur_param_dict
[
'ceil_mode'
]),
str
(
cur_param_dict
[
'flag_global'
]),
str
(
cur_param_dict
[
'exclusive'
]),
str
(
pooling_type
)]
elif
cur_op_name
==
'activation'
:
batch
=
input_dims
.
strip
(
'['
']'
).
split
()[
0
]
in_ch
=
input_dims
.
strip
(
'['
']'
).
split
()[
1
]
height
=
input_dims
.
strip
(
'['
']'
).
split
()[
2
]
width
=
input_dims
.
strip
(
'['
']'
).
split
()[
3
]
act_type
=
1
if
cur_param_dict
[
'act_type'
]
==
'relu'
:
act_type
=
1
elif
cur_param_dict
[
'act_type'
]
==
'relu6'
:
act_type
=
2
elif
cur_param_dict
[
'act_type'
]
==
'leaky_relu'
:
act_type
=
4
elif
cur_param_dict
[
'act_type'
]
==
'sigmoid'
:
act_type
=
5
elif
cur_param_dict
[
'act_type'
]
==
'tanh'
:
act_type
=
6
elif
cur_param_dict
[
'act_type'
]
==
'swish'
:
act_type
=
7
elif
cur_param_dict
[
'act_type'
]
==
'exp'
:
act_type
=
8
elif
cur_param_dict
[
'act_type'
]
==
'abs'
:
act_type
=
9
elif
cur_param_dict
[
'act_type'
]
==
'hard_swish'
:
act_type
=
10
elif
cur_param_dict
[
'act_type'
]
==
'reciprocal'
:
act_type
=
11
elif
cur_param_dict
[
'act_type'
]
==
'threshold_relu'
:
act_type
=
12
output_dims
=
input_dims
runtime_cmd
=
[
str
(
batch
),
str
(
in_ch
),
str
(
height
),
str
(
width
),
str
(
act_type
)]
elif
cur_op_name
==
'fc'
:
m
=
input_dims
.
strip
(
'['
']'
).
split
()[
0
]
k
=
input_dims
.
strip
(
'['
']'
).
split
()[
1
]
n
=
cur_param_dict
[
'param_dim'
].
split
(
'x'
)[
1
]
output_dims
=
'['
+
m
+
' '
+
n
+
']'
runtime_cmd
=
[
str
(
m
),
str
(
n
),
str
(
k
),
str
(
cur_param_dict
[
'flag_bias'
]),
str
(
cur_param_dict
[
'dtype'
])]
avg_latency
,
min_latency
,
max_latency
=
get_op_latency
([
cur_op_name
]
+
runtime_cmd
+
[
str
(
args
.
threads
),
str
(
args
.
power_mode
),
str
(
args
.
warmup_times
),
str
(
args
.
repeats_times
)],
args
.
platform
)
param_dict
=
''
for
k
in
cur_param_dict
:
param_dict
+=
str
(
k
)
+
'='
+
str
(
cur_param_dict
[
k
])
+
','
param_dict
=
'('
+
param_dict
[:
-
1
]
+
')'
handle
.
write
(
'{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\t
{}
\n
'
.
format
(
cur_op_name
.
ljust
(
10
),
input_dims
.
ljust
(
10
),
output_dims
.
ljust
(
10
),
param_dict
.
ljust
(
80
),
str
(
min_latency
).
ljust
(
10
),
str
(
max_latency
).
ljust
(
10
),
str
(
avg_latency
).
ljust
(
10
)))
fid
.
close
()
handle
.
close
()
print
(
'Congratulations! Get Latency LookUp Table is Completed.'
)
if
__name__
==
'__main__'
:
main
()
lite/tests/benchmark/latency_lookup_table.txt
0 → 100644
浏览文件 @
4ef5d5ec
dev_info armv7/v8 core_num thread_num power_mode core0 arch core1 arch core2 arch core3 arch core4 arch core5 arch core6 arch core7 arch
Hisilicon Kirin980 armv8 8 1 ARM_A55 ARM_A55 ARM_A55 ARM_A55 ARM_A76 ARM_A76 ARM_A76 ARM_A76
op_name input_dims output_dims param_info min_latency(ms) max_latency(ms) avg_latency(ms)
conv [1 96 112 112] [1 48 114 114] (ch_out=48,stride=[1 1],pad=[0 0 0 0],kernel=1x1,group=1,dilation=[1 1],flag_bias=0,flag_act=0,dtype=float) 3.472 5.384 3.97393
fc [4 8] [4 1000] (param_dim=8x1000,flag_bias=1,dtype=float) 0.009 0.023 0.00951
batchnorm [1 8 64 64] [1 8 64 64] (epsilon=1e-4f,momentum=0.9f,dtype=float) 0.01 0.012 0.0114
pooling [1 8 64 64] [1 8 32 32] (stride=[2 2],pad=[0 0 0 0],kernel=2x2,ceil_mode=0,flag_global=0,exclusive=0,pooling_type=avg,dtype=float) 0.009 0.01 0.00969
activation [1 8 64 64] [1 8 64 64] (act_type=relu,dtype=float) 0.01 0.028 0.01098
lite/tests/benchmark/ops.txt
0 → 100644
浏览文件 @
4ef5d5ec
conv [1 96 112 112] (ch_out=48, stride=[1 1], group=1, kernel=1x1, pad=[0 0 0 0], dilation=[1 1], flag_bias=0, flag_act=0, dtype=float)
fc [4 8] (flag_bias=1, param_dim=8x1000)
batchnorm [1 8 64 64] (epsilon=1e-4f, momentum=0.9f)
pooling [1 8 64 64] (stride=[2 2], kernel=2x2, pad=[0 0 0 0], exclusive=0, pooling_type=avg)
activation [1 8 64 64] (act_type=relu)
lite/tests/benchmark/src/get_activation_latency.cc
0 → 100644
浏览文件 @
4ef5d5ec
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <iostream>
#include <memory>
#include "lite/core/context.h"
#include "lite/core/profile/timer.h"
#include "lite/core/tensor.h"
#include "lite/kernels/arm/activation_compute.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/tensor_utils.h"
typedef
paddle
::
lite
::
Tensor
Tensor
;
typedef
paddle
::
lite
::
DDim
DDim
;
typedef
paddle
::
lite
::
operators
::
ActivationParam
ActivationParam
;
using
paddle
::
lite
::
profile
::
Timer
;
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
10
)
{
std
::
cerr
<<
"usage: "
<<
argv
[
0
]
<<
"
\n
"
<<
" <batch_size>
\n
"
<<
" <input_channel>
\n
"
<<
" <input_height>
\n
"
<<
" <input_width>
\n
"
<<
" <act_type>
\n
"
<<
" <thread_num>
\n
"
<<
" <power_mode>
\n
"
<<
" <warmup_times>
\n
"
<<
" <repeats_times>"
<<
std
::
endl
;
return
0
;
}
#ifdef LITE_WITH_ARM
paddle
::
lite
::
DeviceInfo
::
Init
();
#endif
int
batch_size
=
atoi
(
argv
[
1
]);
int
input_channel
=
atoi
(
argv
[
2
]);
int
input_height
=
atoi
(
argv
[
3
]);
int
input_width
=
atoi
(
argv
[
4
]);
int
thread_num
=
atoi
(
argv
[
6
]);
int
power_mode
=
atoi
(
argv
[
7
]);
int
warmup
=
atoi
(
argv
[
8
]);
int
repeats
=
atoi
(
argv
[
9
]);
int
act_type
=
atoi
(
argv
[
5
]);
const
float
six
=
6.
f
;
const
float
leakey_relu_scale
=
8.88
f
;
#ifdef LITE_WITH_ARM
ActivationParam
act_param
;
Tensor
x
,
y
;
DDim
dim_in
=
DDim
({
batch_size
,
input_channel
,
input_height
,
input_width
});
x
.
set_precision
(
PRECISION
(
kFloat
));
x
.
Resize
(
dim_in
);
paddle
::
lite
::
fill_tensor_rand
(
x
,
-
1.
f
,
1.
f
);
act_param
.
X
=
&
x
;
act_param
.
active_type
=
(
paddle
::
lite_api
::
ActivationType
)
act_type
;
act_param
.
has_active
=
true
;
if
(
act_type
==
2
)
{
act_param
.
Relu_clipped_coef
=
six
;
}
else
if
(
act_type
==
4
)
{
act_param
.
Leaky_relu_alpha
=
leakey_relu_scale
;
}
act_param
.
Out
=
&
y
;
act_param
.
Out
->
set_precision
(
PRECISION
(
kFloat
));
act_param
.
Out
->
Resize
(
dim_in
);
Timer
t0
;
if
(
act_type
==
1
)
{
paddle
::
lite
::
kernels
::
arm
::
ReluCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
2
)
{
paddle
::
lite
::
kernels
::
arm
::
Relu6Compute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
4
)
{
paddle
::
lite
::
kernels
::
arm
::
LeakyReluCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
5
)
{
paddle
::
lite
::
kernels
::
arm
::
SigmoidCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
6
)
{
paddle
::
lite
::
kernels
::
arm
::
TanhCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
7
)
{
paddle
::
lite
::
kernels
::
arm
::
SwishCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
8
)
{
paddle
::
lite
::
kernels
::
arm
::
ExpCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
9
)
{
paddle
::
lite
::
kernels
::
arm
::
AbsCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
10
)
{
paddle
::
lite
::
kernels
::
arm
::
HardSwishCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
11
)
{
paddle
::
lite
::
kernels
::
arm
::
ReciprocalCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
else
if
(
act_type
==
12
)
{
paddle
::
lite
::
kernels
::
arm
::
ThresholdedReluCompute
act_compute
;
act_compute
.
SetParam
(
act_param
);
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
act_compute
.
SetContext
(
std
::
move
(
ctx1
));
act_compute
.
PrepareForRun
();
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
act_compute
.
Launch
();
}
// compute
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
act_compute
.
Launch
();
t0
.
Stop
();
}
}
printf
(
"Avg Latency is %f
\n
"
,
t0
.
LapTimes
().
Avg
());
printf
(
"Min Latency is %f
\n
"
,
t0
.
LapTimes
().
Min
());
printf
(
"Max Latency is %f
\n
"
,
t0
.
LapTimes
().
Max
());
#endif
return
0
;
}
lite/tests/benchmark/src/get_batchnorm_latency.cc
0 → 100644
浏览文件 @
4ef5d5ec
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <iostream>
#include "lite/core/context.h"
#include "lite/core/profile/timer.h"
#include "lite/core/tensor.h"
#include "lite/kernels/arm/batch_norm_compute.h"
#include "lite/operators/op_params.h"
typedef
paddle
::
lite
::
Tensor
Tensor
;
typedef
paddle
::
lite
::
kernels
::
arm
::
BatchNormCompute
BatchNormCompute
;
using
paddle
::
lite
::
profile
::
Timer
;
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
11
)
{
std
::
cerr
<<
"usage: "
<<
argv
[
0
]
<<
"
\n
"
<<
" <batch_size>
\n
"
<<
" <input_channel>
\n
"
<<
" <input_height>
\n
"
<<
" <input_width>
\n
"
<<
" <epsilon>
\n
"
<<
" <momentum>
\n
"
<<
" <thread_num>
\n
"
<<
" <power_mode>
\n
"
<<
" <warmup_times>
\n
"
<<
" <repeats_times>
\n
"
<<
std
::
endl
;
return
0
;
}
#ifdef LITE_WITH_ARM
paddle
::
lite
::
DeviceInfo
::
Init
();
#endif
int
batch_size
=
atoi
(
argv
[
1
]);
int
input_channel
=
atoi
(
argv
[
2
]);
int
input_height
=
atoi
(
argv
[
3
]);
int
input_width
=
atoi
(
argv
[
4
]);
float
epsilon
=
atof
(
argv
[
5
]);
float
momentum
=
atof
(
argv
[
6
]);
int
thread_num
=
atoi
(
argv
[
7
]);
int
power_mode
=
atoi
(
argv
[
8
]);
int
warmup
=
atoi
(
argv
[
9
]);
int
repeats
=
atoi
(
argv
[
10
]);
#ifdef LITE_WITH_ARM
Tensor
x
;
Tensor
scale
;
Tensor
bias
;
Tensor
mean
;
Tensor
variance
;
Tensor
y
;
Tensor
mean_out
;
Tensor
variance_out
;
Tensor
saved_mean
;
Tensor
saved_variance
;
std
::
vector
<
int64_t
>
in_out_shape
=
{
batch_size
,
input_channel
,
input_height
,
input_width
};
x
.
Resize
(
in_out_shape
);
scale
.
Resize
({
input_channel
});
bias
.
Resize
({
input_channel
});
mean
.
Resize
({
input_channel
});
variance
.
Resize
({
input_channel
});
y
.
Resize
(
in_out_shape
);
mean_out
.
Resize
({
input_channel
});
variance_out
.
Resize
({
input_channel
});
saved_mean
.
Resize
({
input_channel
});
saved_variance
.
Resize
({
input_channel
});
// initialize the data of input tensors
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
scale_data
=
scale
.
mutable_data
<
float
>
();
auto
*
bias_data
=
bias
.
mutable_data
<
float
>
();
auto
*
mean_data
=
mean
.
mutable_data
<
float
>
();
auto
*
variance_data
=
variance
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
%
64
);
}
for
(
int
i
=
0
;
i
<
scale
.
dims
().
production
();
i
++
)
{
scale_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
0.01
f
+
0.03
f
;
}
for
(
int
i
=
0
;
i
<
bias
.
dims
().
production
();
i
++
)
{
bias_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
0.065
f
+
0.1
f
;
}
for
(
int
i
=
0
;
i
<
mean
.
dims
().
production
();
i
++
)
{
mean_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
0.0565
f
;
}
for
(
int
i
=
0
;
i
<
variance
.
dims
().
production
();
i
++
)
{
variance_data
[
i
]
=
static_cast
<
float
>
(
i
)
*
2.08
f
+
1.5
f
;
}
// prepare kernel params and run
BatchNormCompute
batch_norm
;
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
batch_norm
.
SetContext
(
std
::
move
(
ctx1
));
paddle
::
lite
::
operators
::
BatchNormParam
param
;
param
.
x
=
&
x
;
param
.
scale
=
&
scale
;
param
.
bias
=
&
bias
;
param
.
mean
=
&
mean
;
param
.
variance
=
&
variance
;
param
.
is_test
=
false
;
param
.
use_global_stats
=
true
;
param
.
epsilon
=
epsilon
;
param
.
momentum
=
momentum
;
param
.
data_layout
=
DATALAYOUT
(
kNCHW
);
param
.
y
=
&
y
;
param
.
mean_out
=
&
mean_out
;
param
.
variance_out
=
&
variance_out
;
param
.
saved_mean
=
&
saved_mean
;
param
.
saved_variance
=
&
saved_variance
;
batch_norm
.
SetParam
(
param
);
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
batch_norm
.
Launch
();
}
// compute
Timer
t0
;
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
batch_norm
.
Launch
();
t0
.
Stop
();
}
printf
(
"Avg Latency is %f
\n
"
,
t0
.
LapTimes
().
Avg
());
printf
(
"Min Latency is %f
\n
"
,
t0
.
LapTimes
().
Min
());
printf
(
"Max Latency is %f
\n
"
,
t0
.
LapTimes
().
Max
());
#endif
return
0
;
}
lite/tests/benchmark/src/get_conv_latency.cc
0 → 100644
浏览文件 @
4ef5d5ec
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <iostream>
#include "lite/core/context.h"
#include "lite/core/profile/timer.h"
#include "lite/core/tensor.h"
#include "lite/kernels/arm/conv_compute.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/tensor_utils.h"
typedef
paddle
::
lite
::
operators
::
ConvParam
ConvParam
;
typedef
paddle
::
lite
::
Tensor
Tensor
;
typedef
paddle
::
lite
::
DDim
DDim
;
typedef
paddle
::
lite
::
operators
::
ActivationParam
ActivationParam
;
using
paddle
::
lite
::
profile
::
Timer
;
using
paddle
::
lite_api
::
PrecisionType
;
DDim
compute_out_dim
(
const
DDim
&
dim_in
,
const
paddle
::
lite
::
operators
::
ConvParam
&
param
)
{
DDim
dim_out
=
dim_in
;
auto
paddings
=
*
param
.
paddings
;
auto
dilations
=
*
param
.
dilations
;
dim_out
[
1
]
=
param
.
filter
->
dims
()[
0
];
auto
kernel_h
=
param
.
filter
->
dims
()[
2
];
auto
kernel_w
=
param
.
filter
->
dims
()[
3
];
auto
h
=
dim_in
[
2
];
auto
w
=
dim_in
[
3
];
int
dila_h
=
dilations
[
0
];
int
dila_w
=
dilations
[
1
];
int
pad_top
=
paddings
[
0
];
int
pad_bottom
=
paddings
[
1
];
int
pad_left
=
paddings
[
2
];
int
pad_right
=
paddings
[
3
];
int
stride_h
=
param
.
strides
[
0
];
int
stride_w
=
param
.
strides
[
1
];
auto
kernel_exten
=
dila_h
*
(
kernel_h
-
1
)
+
1
;
auto
hout
=
(
h
+
pad_top
+
pad_bottom
-
kernel_exten
)
/
stride_h
+
1
;
kernel_exten
=
dila_w
*
(
kernel_w
-
1
)
+
1
;
auto
wout
=
(
w
+
pad_left
+
pad_right
-
kernel_exten
)
/
stride_w
+
1
;
dim_out
[
2
]
=
hout
;
dim_out
[
3
]
=
wout
;
return
dim_out
;
}
template
<
PrecisionType
Ptype
,
PrecisionType
OutType
>
void
test_conv
(
const
DDim
&
input_dims
,
const
DDim
&
weight_dims
,
const
int
group
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
pads
,
const
std
::
vector
<
int
>&
dilas
,
const
bool
flag_bias
,
const
int
flag_act
,
const
int
thread_num
,
const
int
power_mode
,
const
int
warmup
,
const
int
repeats
,
const
float
leakey_relu_scale
=
8.88
f
)
{
ConvParam
param
;
Tensor
x
,
f
,
y
;
Tensor
bias
;
param
.
x
=
&
x
;
param
.
x
->
set_precision
(
Ptype
);
param
.
filter
=
&
f
;
param
.
filter
->
Resize
(
weight_dims
);
param
.
filter
->
set_precision
(
Ptype
);
if
(
flag_bias
)
{
param
.
bias
=
&
bias
;
param
.
bias
->
Resize
({
weight_dims
[
0
]});
param
.
bias
->
set_precision
(
PRECISION
(
kFloat
));
}
param
.
strides
=
strides
;
param
.
paddings
=
std
::
make_shared
<
std
::
vector
<
int
>>
(
pads
);
param
.
dilations
=
std
::
make_shared
<
std
::
vector
<
int
>>
(
dilas
);
param
.
groups
=
group
;
const
float
six
=
6.
f
;
if
(
Ptype
==
PRECISION
(
kInt8
))
{
std
::
vector
<
float
>
scale_in
{
1.
f
/
127
};
std
::
vector
<
float
>
scale_out
(
1
,
weight_dims
.
count
(
1
,
4
)
/
127.
f
);
if
(
flag_act
==
2
)
{
scale_out
[
0
]
=
six
/
127.
f
;
}
else
if
(
flag_act
==
4
)
{
if
(
std
::
abs
(
leakey_relu_scale
)
>
1
)
{
scale_out
[
0
]
*=
std
::
abs
(
leakey_relu_scale
);
}
}
std
::
vector
<
float
>
scale_w
(
weight_dims
[
0
],
1.
f
/
127
);
param
.
input_scale
=
scale_in
[
0
];
param
.
output_scale
=
scale_out
[
0
];
param
.
weight_scale
=
scale_w
;
}
if
(
flag_act
>
0
)
{
ActivationParam
act_param
;
act_param
.
has_active
=
true
;
act_param
.
active_type
=
(
paddle
::
lite_api
::
ActivationType
)
flag_act
;
// 1-relu, 2-relu6, 4-leakyrelu
if
(
flag_act
==
1
)
{
param
.
fuse_relu
=
true
;
}
else
if
(
flag_act
==
2
)
{
act_param
.
Relu_clipped_coef
=
six
;
}
else
if
(
flag_act
==
4
)
{
act_param
.
Leaky_relu_alpha
=
leakey_relu_scale
;
}
param
.
activation_param
=
act_param
;
}
param
.
output
=
&
y
;
param
.
output
->
set_precision
(
OutType
);
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
filter
,
-
1.
f
,
1.
f
);
if
(
flag_bias
)
{
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
bias
,
-
1.
f
,
1.
f
);
}
paddle
::
lite
::
kernels
::
arm
::
ConvCompute
<
Ptype
,
OutType
>
conv
;
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
param
.
x
->
Resize
(
input_dims
);
DDim
dim_out
=
compute_out_dim
(
input_dims
,
param
);
param
.
output
->
Resize
(
dim_out
);
conv
.
SetParam
(
param
);
conv
.
SetContext
(
std
::
move
(
ctx1
));
conv
.
PrepareForRun
();
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
x
,
-
1.
f
,
1.
f
);
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
conv
.
Launch
();
}
// compute
Timer
t0
;
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
conv
.
Launch
();
t0
.
Stop
();
}
printf
(
"Avg Latency is %f
\n
"
,
t0
.
LapTimes
().
Avg
());
printf
(
"Min Latency is %f
\n
"
,
t0
.
LapTimes
().
Min
());
printf
(
"Max Latency is %f
\n
"
,
t0
.
LapTimes
().
Max
());
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
23
)
{
std
::
cerr
<<
"usage: "
<<
argv
[
0
]
<<
"
\n
"
<<
" <batch_size>
\n
"
<<
" <input_channel>
\n
"
<<
" <input_height>
\n
"
<<
" <input_width>
\n
"
<<
" <output_channel>
\n
"
<<
" <group_size>
\n
"
<<
" <kernel_size>
\n
"
<<
" <pad_top>
\n
"
<<
" <pad_bottom>
\n
"
<<
" <pad_left>
\n
"
<<
" <pad_right>
\n
"
<<
" <stride_h>
\n
"
<<
" <stride_w>
\n
"
<<
" <dilation_h>
\n
"
<<
" <dilation_w>
\n
"
<<
" <flag_bias>
\n
"
<<
" <flag_act>
\n
"
<<
" <dtype>
\n
"
<<
" <thread_num>
\n
"
<<
" <power_mode>
\n
"
<<
" <warmup_times>
\n
"
<<
" <repeats_times>
\n
"
<<
std
::
endl
;
return
0
;
}
#ifdef LITE_WITH_ARM
paddle
::
lite
::
DeviceInfo
::
Init
();
#endif
int
batch_size
=
atoi
(
argv
[
1
]);
int
input_channel
=
atoi
(
argv
[
2
]);
int
input_height
=
atoi
(
argv
[
3
]);
int
input_width
=
atoi
(
argv
[
4
]);
int
output_channel
=
atoi
(
argv
[
5
]);
int
group_size
=
atoi
(
argv
[
6
]);
int
kernel_size
=
atoi
(
argv
[
7
]);
int
pad_top
=
atoi
(
argv
[
8
]);
int
pad_bottom
=
atoi
(
argv
[
9
]);
int
pad_left
=
atoi
(
argv
[
10
]);
int
pad_right
=
atoi
(
argv
[
11
]);
int
stride_h
=
atoi
(
argv
[
12
]);
int
stride_w
=
atoi
(
argv
[
13
]);
int
dilation_h
=
atoi
(
argv
[
14
]);
int
dilation_w
=
atoi
(
argv
[
15
]);
int
flag_bias
=
atoi
(
argv
[
16
]);
int
flag_act
=
atoi
(
argv
[
17
]);
int
dtype
=
atoi
(
argv
[
18
]);
int
thread_num
=
atoi
(
argv
[
19
]);
int
power_mode
=
atoi
(
argv
[
20
]);
int
warmup
=
atoi
(
argv
[
21
]);
int
repeats
=
atoi
(
argv
[
22
]);
DDim
weight_dims
(
{
output_channel
,
input_channel
/
group_size
,
kernel_size
,
kernel_size
});
DDim
input_dims
({
batch_size
,
input_channel
,
input_height
,
input_width
});
switch
(
dtype
)
{
case
0
:
test_conv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
(
input_dims
,
weight_dims
,
group_size
,
{
stride_h
,
stride_w
},
{
pad_top
,
pad_bottom
,
pad_left
,
pad_right
},
{
dilation_h
,
dilation_w
},
flag_bias
,
flag_act
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
case
1
:
test_conv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
(
input_dims
,
weight_dims
,
group_size
,
{
stride_h
,
stride_w
},
{
pad_top
,
pad_bottom
,
pad_left
,
pad_right
},
{
dilation_h
,
dilation_w
},
flag_bias
,
flag_act
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
case
2
:
test_conv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
(
input_dims
,
weight_dims
,
group_size
,
{
stride_h
,
stride_w
},
{
pad_top
,
pad_bottom
,
pad_left
,
pad_right
},
{
dilation_h
,
dilation_w
},
flag_bias
,
flag_act
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
default:
test_conv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
(
input_dims
,
weight_dims
,
group_size
,
{
stride_h
,
stride_w
},
{
pad_top
,
pad_bottom
,
pad_left
,
pad_right
},
{
dilation_h
,
dilation_w
},
flag_bias
,
flag_act
,
thread_num
,
power_mode
,
warmup
,
repeats
);
}
return
0
;
}
lite/tests/benchmark/src/get_fc_latency.cc
0 → 100644
浏览文件 @
4ef5d5ec
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <iostream>
#include "lite/core/context.h"
#include "lite/core/profile/timer.h"
#include "lite/core/tensor.h"
#include "lite/kernels/arm/fc_compute.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/tensor_utils.h"
typedef
paddle
::
lite
::
Tensor
Tensor
;
typedef
paddle
::
lite
::
DDim
DDim
;
typedef
paddle
::
lite
::
operators
::
FcParam
FcParam
;
using
paddle
::
lite
::
profile
::
Timer
;
using
paddle
::
lite_api
::
PrecisionType
;
template
<
PrecisionType
Ptype
,
PrecisionType
OutType
>
void
test_fc
(
const
int
m
,
const
int
n
,
const
int
k
,
const
bool
has_bias
,
const
int
thread_num
,
const
int
power_mode
,
const
int
warmup
,
const
int
repeats
)
{
FcParam
param
;
Tensor
x
,
y
,
bias
,
w
;
param
.
input
=
&
x
;
param
.
input
->
set_precision
(
Ptype
);
param
.
input
->
Resize
({
m
,
k
});
param
.
w
=
&
w
;
param
.
w
->
set_precision
(
Ptype
);
param
.
w
->
Resize
({
k
,
n
});
if
(
has_bias
)
{
param
.
bias
=
&
bias
;
param
.
bias
->
set_precision
(
Ptype
);
param
.
bias
->
Resize
({
1
,
n
});
}
else
{
param
.
bias
=
nullptr
;
}
param
.
output
=
&
y
;
param
.
output
->
set_precision
(
OutType
);
param
.
output
->
Resize
({
m
,
n
});
param
.
in_num_col_dims
=
1
;
param
.
in_mat_dims
=
param
.
input
->
dims
();
paddle
::
lite
::
kernels
::
arm
::
FcCompute
<
Ptype
,
OutType
>
fc_compute
;
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
// set param and context
fc_compute
.
SetParam
(
param
);
fc_compute
.
SetContext
(
std
::
move
(
ctx1
));
// prepare for run
fc_compute
.
PrepareForRun
();
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
input
,
-
1.
f
,
1.
f
);
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
w
,
-
1.
f
,
1.
f
);
if
(
has_bias
)
{
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
bias
,
-
1.
f
,
1.
f
);
}
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
fc_compute
.
Launch
();
}
// compute
Timer
t0
;
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
fc_compute
.
Launch
();
t0
.
Stop
();
}
printf
(
"Avg Latency is %f
\n
"
,
t0
.
LapTimes
().
Avg
());
printf
(
"Min Latency is %f
\n
"
,
t0
.
LapTimes
().
Min
());
printf
(
"Max Latency is %f
\n
"
,
t0
.
LapTimes
().
Max
());
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
10
)
{
std
::
cerr
<<
"usage: "
<<
argv
[
0
]
<<
"
\n
"
<<
" <m>
\n
"
<<
" <n>
\n
"
<<
" <k>
\n
"
<<
" <has_bias>
\n
"
<<
" <dtype>
\n
"
<<
" <thread_num>
\n
"
<<
" <power_mode>
\n
"
<<
" <warmup_times>
\n
"
<<
" <repeats_times>
\n
"
<<
std
::
endl
;
return
0
;
}
#ifdef LITE_WITH_ARM
paddle
::
lite
::
DeviceInfo
::
Init
();
#endif
int
m
=
atoi
(
argv
[
1
]);
int
n
=
atoi
(
argv
[
2
]);
int
k
=
atoi
(
argv
[
3
]);
bool
has_bias
=
atoi
(
argv
[
4
])
==
0
?
false
:
true
;
int
dtype
=
argv
[
5
]
==
"int8_int8"
?
2
:
argv
[
5
]
==
"float_int8"
?
1
:
argv
[
5
]
==
"float"
?
0
:
0
;
int
thread_num
=
atoi
(
argv
[
6
]);
int
power_mode
=
atoi
(
argv
[
7
]);
int
warmup
=
atoi
(
argv
[
8
]);
int
repeats
=
atoi
(
argv
[
9
]);
switch
(
dtype
)
{
case
0
:
test_fc
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
(
m
,
n
,
k
,
has_bias
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
case
1
:
test_fc
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
(
m
,
n
,
k
,
has_bias
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
case
2
:
test_fc
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
(
m
,
n
,
k
,
has_bias
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
default:
test_fc
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
(
m
,
n
,
k
,
has_bias
,
thread_num
,
power_mode
,
warmup
,
repeats
);
break
;
}
return
0
;
}
lite/tests/benchmark/src/get_pooling_latency.cc
0 → 100644
浏览文件 @
4ef5d5ec
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <iostream>
#include "lite/core/context.h"
#include "lite/core/profile/timer.h"
#include "lite/core/tensor.h"
#include "lite/kernels/arm/pool_compute.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/tensor_utils.h"
typedef
paddle
::
lite
::
Tensor
Tensor
;
typedef
paddle
::
lite
::
DDim
DDim
;
typedef
paddle
::
lite
::
operators
::
PoolParam
PoolParam
;
using
paddle
::
lite
::
profile
::
Timer
;
DDim
compute_out_dim
(
const
DDim
&
dim_in
,
const
paddle
::
lite
::
operators
::
PoolParam
&
param
)
{
DDim
dim_out
=
dim_in
;
auto
kernel_h
=
param
.
ksize
[
0
];
auto
kernel_w
=
param
.
ksize
[
1
];
auto
h
=
dim_in
[
2
];
auto
w
=
dim_in
[
3
];
auto
paddings
=
*
param
.
paddings
;
int
stride_h
=
param
.
strides
[
0
];
int
stride_w
=
param
.
strides
[
1
];
bool
ceil_mode
=
param
.
ceil_mode
;
bool
flag_global
=
param
.
global_pooling
;
int
hout
=
1
;
int
wout
=
1
;
if
(
!
flag_global
)
{
if
(
!
ceil_mode
)
{
hout
=
(
h
-
kernel_h
+
paddings
[
0
]
+
paddings
[
1
])
/
stride_h
+
1
;
wout
=
(
w
-
kernel_w
+
paddings
[
2
]
+
paddings
[
3
])
/
stride_w
+
1
;
}
else
{
hout
=
(
h
-
kernel_h
+
paddings
[
0
]
+
paddings
[
1
]
+
stride_h
-
1
)
/
stride_h
+
1
;
wout
=
(
w
-
kernel_w
+
paddings
[
2
]
+
paddings
[
3
]
+
stride_w
-
1
)
/
stride_w
+
1
;
}
}
dim_out
[
2
]
=
hout
;
dim_out
[
3
]
=
wout
;
return
dim_out
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
20
)
{
std
::
cerr
<<
"usage: "
<<
argv
[
0
]
<<
"
\n
"
<<
" <batch_size>
\n
"
<<
" <input_channel>
\n
"
<<
" <input_height>
\n
"
<<
" <input_width>
\n
"
<<
" <kernel_size>
\n
"
<<
" <stride_size>
\n
"
<<
" <pad_size>
\n
"
<<
" <exclusive>
\n
"
<<
" <pooling_type>
\n
"
<<
" <ceil_mode>
\n
"
<<
" <flag_global>
\n
"
<<
" <thread_num>
\n
"
<<
" <power_mode>
\n
"
<<
" <warmup_times>
\n
"
<<
" <repeats_times>
\n
"
<<
std
::
endl
;
return
0
;
}
#ifdef LITE_WITH_ARM
paddle
::
lite
::
DeviceInfo
::
Init
();
#endif
int
batch_size
=
atoi
(
argv
[
1
]);
int
input_channel
=
atoi
(
argv
[
2
]);
int
input_height
=
atoi
(
argv
[
3
]);
int
input_width
=
atoi
(
argv
[
4
]);
int
stride_h
=
atoi
(
argv
[
5
]);
int
stride_w
=
atoi
(
argv
[
6
]);
int
pad_top
=
atoi
(
argv
[
7
]);
int
pad_bottom
=
atoi
(
argv
[
8
]);
int
pad_left
=
atoi
(
argv
[
9
]);
int
pad_right
=
atoi
(
argv
[
10
]);
int
kernel_size
=
atoi
(
argv
[
11
]);
bool
ceil_mode
=
argv
[
12
]
==
0
?
false
:
true
;
bool
flag_global
=
argv
[
13
]
==
0
?
false
:
true
;
bool
exclusive
=
atoi
(
argv
[
14
])
==
0
?
false
:
true
;
std
::
string
pooling_type
=
atoi
(
argv
[
15
])
==
0
?
"max"
:
"avg"
;
int
thread_num
=
atoi
(
argv
[
16
]);
int
power_mode
=
atoi
(
argv
[
17
]);
int
warmup
=
atoi
(
argv
[
18
]);
int
repeats
=
atoi
(
argv
[
19
]);
#ifdef LITE_WITH_ARM
PoolParam
param
;
Tensor
x
,
y
;
param
.
x
=
&
x
;
param
.
x
->
set_precision
(
PRECISION
(
kFloat
));
param
.
ksize
=
{
kernel_size
,
kernel_size
};
param
.
strides
=
{
stride_h
,
stride_w
};
param
.
paddings
=
std
::
make_shared
<
std
::
vector
<
int
>>
(
std
::
vector
<
int
>
{
pad_top
,
pad_bottom
,
pad_left
,
pad_right
});
param
.
ceil_mode
=
ceil_mode
;
param
.
global_pooling
=
flag_global
;
param
.
pooling_type
=
pooling_type
;
param
.
exclusive
=
exclusive
;
param
.
adaptive
=
false
;
param
.
use_quantizer
=
false
;
param
.
output
=
&
y
;
param
.
output
->
set_precision
(
PRECISION
(
kFloat
));
paddle
::
lite
::
kernels
::
arm
::
PoolCompute
pool
;
std
::
unique_ptr
<
paddle
::
lite
::
KernelContext
>
ctx1
(
new
paddle
::
lite
::
KernelContext
);
auto
&
ctx
=
ctx1
->
As
<
paddle
::
lite
::
ARMContext
>
();
ctx
.
SetRunMode
(
static_cast
<
paddle
::
lite_api
::
PowerMode
>
(
power_mode
),
thread_num
);
// set param and context
pool
.
SetParam
(
param
);
pool
.
SetContext
(
std
::
move
(
ctx1
));
// prepare for run
pool
.
PrepareForRun
();
DDim
dim_in
=
DDim
({
batch_size
,
input_channel
,
input_height
,
input_width
});
DDim
dim_out
=
compute_out_dim
(
dim_in
,
param
);
param
.
x
->
Resize
(
dim_in
);
param
.
output
->
Resize
(
dim_out
);
paddle
::
lite
::
fill_tensor_rand
(
*
param
.
x
,
-
1.
f
,
1.
f
);
// warm up
for
(
int
i
=
0
;
i
<
warmup
;
++
i
)
{
pool
.
Launch
();
}
// compute
Timer
t0
;
for
(
int
i
=
0
;
i
<
repeats
;
++
i
)
{
t0
.
Start
();
pool
.
Launch
();
t0
.
Stop
();
}
printf
(
"Avg Latency is %f
\n
"
,
t0
.
LapTimes
().
Avg
());
printf
(
"Min Latency is %f
\n
"
,
t0
.
LapTimes
().
Min
());
printf
(
"Max Latency is %f
\n
"
,
t0
.
LapTimes
().
Max
());
#endif
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录