未验证 提交 4eb5680a 编写于 作者: Z zhangyang0701 提交者: GitHub

Merge branch 'develop' into backup

...@@ -300,7 +300,7 @@ static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) { ...@@ -300,7 +300,7 @@ static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
template <class T> template <class T>
static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold, static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
float eta) { float eta, int post_nms_num = 100) {
int64_t num_boxes = bbox->dims()[0]; int64_t num_boxes = bbox->dims()[0];
// 4: [xmin ymin xmax ymax] // 4: [xmin ymin xmax ymax]
int64_t box_size = bbox->dims()[1]; int64_t box_size = bbox->dims()[1];
...@@ -314,7 +314,7 @@ static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold, ...@@ -314,7 +314,7 @@ static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
int selected_num = 0; int selected_num = 0;
T adaptive_threshold = nms_threshold; T adaptive_threshold = nms_threshold;
const T *bbox_data = bbox->data<T>(); const T *bbox_data = bbox->data<T>();
while (sorted_indices.size() != 0) { while ((sorted_indices.size() != 0) && (selected_num < post_nms_num)) {
int idx = sorted_indices.back().second; int idx = sorted_indices.back().second;
bool flag = true; bool flag = true;
for (int kept_idx : selected_indices) { for (int kept_idx : selected_indices) {
...@@ -397,17 +397,19 @@ std::pair<Tensor, Tensor> ProposalForOneImage( ...@@ -397,17 +397,19 @@ std::pair<Tensor, Tensor> ProposalForOneImage(
return std::make_pair(bbox_sel, scores_filter); return std::make_pair(bbox_sel, scores_filter);
} }
Tensor keep_nms = NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta); // Tensor keep_nms = NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta);
Tensor keep_nms =
NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta, post_nms_top_n);
if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) { if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
keep_nms.Resize({post_nms_top_n}); keep_nms.Resize({post_nms_top_n});
} }
// proposals.mutable_data<T>({keep_nms.numel(), 4});//original proposals.mutable_data<T>({keep_nms.numel(), 4}); // original
// scores_sel.mutable_data<T>({keep_nms.numel(), 1});//original scores_sel.mutable_data<T>({keep_nms.numel(), 1}); // original
proposals.mutable_data<T>({post_nms_top_n, 4}); // wong // proposals.mutable_data<T>({post_nms_top_n, 4}); // wong
scores_sel.mutable_data<T>({post_nms_top_n, 1}); // wong // scores_sel.mutable_data<T>({post_nms_top_n, 1}); // wong
CPUGather<T>(bbox_sel, keep_nms, &proposals); CPUGather<T>(bbox_sel, keep_nms, &proposals);
CPUGather<T>(scores_filter, keep_nms, &scores_sel); CPUGather<T>(scores_filter, keep_nms, &scores_sel);
return std::make_pair(proposals, scores_sel); return std::make_pair(proposals, scores_sel);
......
...@@ -15,7 +15,6 @@ limitations under the License. */ ...@@ -15,7 +15,6 @@ limitations under the License. */
#ifdef PSROI_POOL_OP #ifdef PSROI_POOL_OP
#include <cmath> #include <cmath>
#include <memory>
#include <vector> #include <vector>
#include "operators/kernel/detection_kernel.h" #include "operators/kernel/detection_kernel.h"
...@@ -72,16 +71,72 @@ bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) { ...@@ -72,16 +71,72 @@ bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) {
return true; return true;
} }
/*
template <typename Dtype>
void PSROIPoolingForward(
const Dtype* bottom_data,
const int height, const int width, const int input_channel,
Dtype* top_data,
const int pooled_height, const int pooled_width, const int output_channel,
const Dtype* bottom_rois,
const Dtype Bin_size_h, const Dtype Bin_size_w, const Dtype roi_start_h,
const Dtype roi_start_w, const int pw, const int ph, const int roi_batch_ind)
{
int hstart = floor(static_cast<Dtype>(ph) * Bin_size_h + roi_start_h);
int wstart = floor(static_cast<Dtype>(pw)* Bin_size_w + roi_start_w);
int hend = ceil(static_cast<Dtype>(ph + 1) * Bin_size_h + roi_start_h);
int wend = ceil(static_cast<Dtype>(pw + 1) * Bin_size_w + roi_start_w);
hstart = std::min(std::max(hstart, 0), height);
hend = std::min(std::max(hend, 0), height);
wstart = std::min(std::max(wstart, 0), width);
wend = std::min(std::max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
float32x4_t sum_pixels_low_c= vdupq_n_f32(0);
float32x4_t sum_pixels_high_c= vdupq_n_f32(0);
if(!is_empty){
Dtype bin_area = (hend - hstart) * (wend - wstart);
float rev_bin_area = 1 / bin_area;
float32x4_t q_bin_area = vdupq_n_f32(rev_bin_area);
//static_cast<float>(bin_area) float pixels_c[output_channel];
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int pixel_offset = (h * width + w) * input_channel;
for(int output_c = 0; output_c < output_channel; output_c++){
int input_channel_offset = output_c * pooled_height *
pooled_width; int input_bias = pixel_offset + input_channel_offset + ph *
pooled_width + pw; pixels_c[output_c] = bottom_data[input_bias];
}
float32x4_t pixel_low_c = vld1q_f32(pixels_c);
float32x4_t pixel_high_c = vld1q_f32(pixels_c + 4);
sum_pixels_low_c = vaddq_f32(sum_pixels_low_c, pixel_low_c);
sum_pixels_high_c = vaddq_f32(sum_pixels_high_c, pixel_high_c);
}
}
sum_pixels_low_c = vmulq_f32(sum_pixels_low_c, q_bin_area);
sum_pixels_high_c = vmulq_f32(sum_pixels_high_c, q_bin_area);
}
int output_index_base = (ph * pooled_width + pw) * output_channel;
top_data += output_index_base;
vst1q_f32(top_data, sum_pixels_low_c);
top_data += 4;
vst1q_f32(top_data, sum_pixels_high_c);
}*/
template <typename Dtype> template <typename Dtype>
void PSROIPooling(const Dtype* bottom_data, const int channels, void PSROIPoolingForward(const Dtype* bottom_data, const int height,
const int height, const int width, const int pooled_height, const int width, const int input_channel,
const int pooled_width, const Dtype* bottom_rois, Dtype* top_data, const int pooled_height,
const int output_dim, const int group_size, Dtype* top_data, const int pooled_width, const int output_channel,
int index, int nid, const Dtype Bin_size_h, const Dtype* bottom_rois, const Dtype Bin_size_h,
const Dtype Bin_size_w, const Dtype roi_start_h, const Dtype Bin_size_w, const Dtype roi_start_h,
const Dtype roi_start_w, const int ctop, const int ph, const Dtype roi_start_w, const int pw, const int ph,
const int roi_batch_ind) { const int roi_batch_ind) {
int pw = index;
int hstart = floor(static_cast<Dtype>(ph) * Bin_size_h + roi_start_h); int hstart = floor(static_cast<Dtype>(ph) * Bin_size_h + roi_start_h);
int wstart = floor(static_cast<Dtype>(pw) * Bin_size_w + roi_start_w); int wstart = floor(static_cast<Dtype>(pw) * Bin_size_w + roi_start_w);
int hend = ceil(static_cast<Dtype>(ph + 1) * Bin_size_h + roi_start_h); int hend = ceil(static_cast<Dtype>(ph + 1) * Bin_size_h + roi_start_h);
...@@ -94,60 +149,35 @@ void PSROIPooling(const Dtype* bottom_data, const int channels, ...@@ -94,60 +149,35 @@ void PSROIPooling(const Dtype* bottom_data, const int channels,
wend = std::min(std::max(wend, 0), width); wend = std::min(std::max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart); bool is_empty = (hend <= hstart) || (wend <= wstart);
int c = (ctop * group_size + ph) * group_size + pw; float sum_pixels_c[output_channel] = {0};
float pixels_c[output_channel] = {0};
Dtype bin_area = (hend - hstart) * (wend - wstart); if (!is_empty) {
bottom_data += (roi_batch_ind * channels + c) * height * width; Dtype bin_area = (hend - hstart) * (wend - wstart);
Dtype out_sum = 0; float rec_bin_area = 1 / bin_area;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int h = hstart; h < hend; ++h) {
int bottom_index = h * width + w; for (int w = wstart; w < wend; ++w) {
out_sum += bottom_data[bottom_index]; int pixel_offset = (h * width + w) * input_channel;
} for (int output_c = 0; output_c < output_channel; output_c++) {
} int input_channel_offset = output_c * pooled_height * pooled_width;
int input_bias =
top_data[nid + index] = is_empty ? 0. : out_sum / bin_area; pixel_offset + input_channel_offset + ph * pooled_width + pw;
} pixels_c[output_c] = bottom_data[input_bias];
void convert_to_chw(float** data_in, int channel, int height, int width,
int num) {
float* data_in_tmp = *data_in;
float* data_tmp = reinterpret_cast<float*>(
fpga::fpga_malloc(channel * height * width * sizeof(float))); // NOLINT
int64_t amount_per_side = width * height;
for (int n = 0; n < num; n++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + n * height * width * channel + c * amount_per_side +
width * h + w) = *((*data_in)++);
} }
}
}
}
*data_in = data_tmp;
fpga::fpga_free(data_in_tmp);
}
void convert_to_hwc(float** data_in, int channel, int height, int width, for (int output_c = 0; output_c < output_channel; output_c++) {
int num) { sum_pixels_c[output_c] += pixels_c[output_c];
float* data_in_tmp = *data_in;
float* data_tmp = reinterpret_cast<float*>(
fpga::fpga_malloc(num * channel * height * width * sizeof(float)));
int64_t amount_per_row = width * channel;
for (int n = 0; n < num; n++) {
for (int c = 0; c < channel; c++) {
for (int h = 0; h < height; h++) {
int64_t offset_height = h * amount_per_row;
for (int w = 0; w < width; w++) {
*(data_tmp + n * channel * height * width + offset_height +
w * channel + c) = *((*data_in)++);
} }
} }
} }
for (int output_c = 0; output_c < output_channel; output_c++) {
sum_pixels_c[output_c] *= rec_bin_area;
}
} }
*data_in = data_tmp;
fpga::fpga_free(data_in_tmp); int output_index_base = (ph * pooled_width + pw) * output_channel;
top_data += output_index_base;
memcpy(top_data, sum_pixels_c, output_channel * 4);
} }
template <> template <>
...@@ -174,14 +204,15 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) { ...@@ -174,14 +204,15 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
int rois_num = rois->dims()[0]; int rois_num = rois->dims()[0];
auto data_nhwc = in->mutable_data<float>(); auto data_nhwc = in->mutable_data<float>();
fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width, 1);
// fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width);
framework::DDim dims_out_new = framework::make_ddim( framework::DDim dims_out_new = framework::make_ddim(
{rois_num, (param.output_)->dims()[1], (((param.output_)->dims()[2])), {rois_num, (param.output_)->dims()[1], (((param.output_)->dims()[2])),
(param.output_)->dims()[3]}); (param.output_)->dims()[3]});
(param.output_)->Resize(dims_out_new); (param.output_)->Resize(dims_out_new);
float* input_data = data_nhwc; // in->data<float>(); const float* input_data = data_nhwc; // in->data<float>();
// shared_ptr<float> input_data(data_nhwc);
framework::Tensor rois_batch_id_list; framework::Tensor rois_batch_id_list;
rois_batch_id_list.Resize({rois_num}); rois_batch_id_list.Resize({rois_num});
auto rois_batch_id_data = rois_batch_id_list.mutable_data<int>(); auto rois_batch_id_data = rois_batch_id_list.mutable_data<int>();
...@@ -203,18 +234,19 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) { ...@@ -203,18 +234,19 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
"output_channels x pooled_height x pooled_width"); "output_channels x pooled_height x pooled_width");
// calculate batch id index for each roi according to LoD // calculate batch id index for each roi according to LoD
// for (int n = 0; n < rois_batch_size; ++n) { for (int n = 0; n < rois_batch_size; ++n) {
// for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
// rois_batch_id_data[i] = n; rois_batch_id_data[i] = n;
// } }
//} }
auto output_data = out->mutable_data<float>(); auto output_data = out->mutable_data<float>();
auto input_rois = rois->data<float>(); auto input_rois = rois->data<float>();
// calculate psroipooling, parallel processing can be implemented per ROI
for (int n = 0; n < rois_num; ++n) { for (int n = 0; n < rois_num; ++n) {
// [start, end) interval for spatial sampling
auto offset_input_rois = input_rois + n * 4; auto offset_input_rois = input_rois + n * 4;
auto offset_output_data =
output_data + pooled_height * pooled_width * output_channels * n;
auto roi_start_w = auto roi_start_w =
static_cast<float>(round(offset_input_rois[0])) * spatial_scale; static_cast<float>(round(offset_input_rois[0])) * spatial_scale;
auto roi_start_h = auto roi_start_h =
...@@ -232,27 +264,18 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) { ...@@ -232,27 +264,18 @@ void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
auto bin_size_h = roi_height / static_cast<float>(pooled_height); auto bin_size_h = roi_height / static_cast<float>(pooled_height);
auto bin_size_w = roi_width / static_cast<float>(pooled_width); auto bin_size_w = roi_width / static_cast<float>(pooled_width);
int roi_batch_ind = 0; // rois_batch_id_data[n]; int roi_batch_ind = rois_batch_id_data[n];
// std::cout << "roi_batch_ind: " << roi_batch_ind << std::endl;
for (int c = 0; c < output_channels; ++c) { for (int ph = 0; ph < pooled_height; ph++) {
for (int ph = 0; ph < pooled_height; ph++) { for (int pw = 0; pw < pooled_width; pw++) {
int index = pooled_width; PSROIPoolingForward<float>(input_data, height, width, input_channels,
int nid = n * output_channels * pooled_height * pooled_width + offset_output_data, pooled_height,
c * pooled_width * pooled_height + ph * pooled_width; pooled_width, output_channels, input_rois,
for (int idx = 0; idx < index; idx++) { bin_size_h, bin_size_w, roi_start_h,
PSROIPooling<float>(input_data, input_channels, height, width, roi_start_w, pw, ph, roi_batch_ind);
pooled_height, pooled_width, input_rois,
output_channels, pooled_height, output_data, idx,
nid, bin_size_h, bin_size_w, roi_start_h,
roi_start_w, c, ph, roi_batch_ind);
}
} }
} }
} }
fpga::fpga_free(input_data);
fpga::image::convert_to_hwc(&output_data, output_channels, pooled_height,
pooled_width, rois_num);
out->reset_data_ptr(output_data);
} }
} // namespace operators } // namespace operators
......
...@@ -12,17 +12,29 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,17 +12,29 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <iostream> #ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include "../test_helper.h" #include "../test_helper.h"
#include "../test_include.h" #include "../test_include.h"
#ifdef PADDLE_MOBILE_FPGA_V1 #ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h" #include "fpga/V1/api.h"
#endif #endif
#ifdef PADDLE_MOBILE_FPGA_V2 #ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h" #include "fpga/V2/api.h"
#endif #endif
#include <string>
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using namespace paddle_mobile; // NOLINT
using namespace paddle_mobile::fpga; // NOLINT
static const char *g_image = "../models/marker/marker1/image.bin";
static const char *g_model = "../models/marker/marker1/model";
static const char *g_param = "../models/marker/marker1/params";
void readStream(std::string filename, char *buf) { void readStream(std::string filename, char *buf) {
std::ifstream in; std::ifstream in;
...@@ -36,132 +48,78 @@ void readStream(std::string filename, char *buf) { ...@@ -36,132 +48,78 @@ void readStream(std::string filename, char *buf) {
auto length = in.tellg(); // report location (this is the length) auto length = in.tellg(); // report location (this is the length)
in.seekg(0, std::ios::beg); // go back to the beginning in.seekg(0, std::ios::beg); // go back to the beginning
in.read(buf, length); in.read(buf, length);
DLOG << length;
in.close(); in.close();
} }
void convert_to_chw(int16_t **data_in, int channel, int height, int width, PaddleMobileConfig GetConfig() {
int num, int16_t *data_tmp) { PaddleMobileConfig config;
int64_t amount_per_side = width * height; config.precision = PaddleMobileConfig::FP32;
for (int n = 0; n < num; n++) { config.device = PaddleMobileConfig::kFPGA;
for (int h = 0; h < height; h++) { config.prog_file = g_model;
for (int w = 0; w < width; w++) { config.param_file = g_param;
for (int c = 0; c < channel; c++) { config.thread_num = 1;
*(data_tmp + n * amount_per_side * channel + c * amount_per_side + config.batch_size = 1;
width * h + w) = *((*data_in)++); config.optimize = true;
} config.lod_mode = true;
} config.quantification = false;
} return config;
}
} }
void dump_stride_half(std::string filename, Tensor input_tensor, int main() {
const int dumpnum, bool use_chw) { open_device();
// bool use_chw = true;
if (input_tensor.dims().size() != 4) return; PaddleMobileConfig config = GetConfig();
int c = (input_tensor.dims())[1]; auto predictor =
int h = (input_tensor.dims())[2]; CreatePaddlePredictor<PaddleMobileConfig,
int w = (input_tensor.dims())[3]; PaddleEngineKind::kPaddleMobile>(config);
int n = (input_tensor.dims())[0];
auto data_ptr = input_tensor.get_data(); std::cout << "Finishing loading model" << std::endl;
auto *data_ptr_16 = reinterpret_cast<half *>(data_ptr);
auto data_tmp = data_ptr_16; float img_info[3] = {432, 1280, 1.0f};
if (use_chw) { int img_length = 432 * 1280 * 3;
data_tmp = auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
reinterpret_cast<half *>(malloc(n * c * h * w * sizeof(int16_t))); readStream(g_image, reinterpret_cast<char *>(img));
convert_to_chw(&data_ptr_16, c, h, w, n, data_tmp);
} std::cout << "Finishing initializing data" << std::endl;
std::ofstream out(filename.c_str()); struct PaddleTensor t_img_info, t_img;
float result = 0; t_img.dtypeid = typeid(float);
int stride = input_tensor.numel() / dumpnum; t_img_info.layout = LAYOUT_HWC;
stride = stride > 0 ? stride : 1; t_img_info.shape = std::vector<int>({1, 3});
for (int i = 0; i < input_tensor.numel(); i += stride) { t_img_info.name = "Image information";
result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]); t_img_info.data.Reset(img_info, 3 * sizeof(float));
out << result << std::endl;
} t_img.dtypeid = typeid(float);
out.close(); t_img.layout = LAYOUT_HWC;
if (data_tmp != data_ptr_16) { t_img.shape = std::vector<int>({1, 432, 1280, 3});
free(data_tmp); t_img.name = "Image information";
t_img.data.Reset(img, img_length * sizeof(float));
predictor->FeedPaddleTensors({t_img_info, t_img});
std::cout << "Finishing feeding data " << std::endl;
predictor->Predict_From_To(0, -1);
std::cout << "Finishing predicting " << std::endl;
std::vector<PaddleTensor> v; // No need to initialize v
predictor->FetchPaddleTensors(&v); // Old data in v will be cleared
for (int i = 0; i < v.size(); ++i) {
auto p = reinterpret_cast<float *>(v[i].data.data());
int len = v[i].data.length();
float result = 0.0f;
std::string str = "fetch" + std::to_string(i);
fpga::savefile<float>(str, p, len, result);
} }
}
void dump_stride_float(std::string filename, Tensor input_tensor, std::cout << "Finish getting vector values" << std::endl;
const int dumpnum) {
auto data_ptr = reinterpret_cast<float *>(input_tensor.get_data());
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = data_ptr[i];
out << result << std::endl;
}
out.close();
}
void dump_stride(std::string filename, Tensor input_tensor, const int dumpnum, ////////////////////////////////////////////////////
bool use_chw) {
static int i = 0;
if (input_tensor.numel() == 0) {
return;
}
if (input_tensor.type() == typeid(float)) {
DLOG << "op: " << i++ << ", float data " << input_tensor.numel();
dump_stride_float(filename, input_tensor, dumpnum);
} else {
DLOG << "op: " << i++ << ", half data " << input_tensor.numel();
dump_stride_half(filename, input_tensor, dumpnum, use_chw);
}
DLOG << "dump input address: " << input_tensor.get_data();
}
static const char *g_marker_combine = "../models/marker/model"; // PaddleTensor tensor;
static const char *g_image_src_float = "../models/marker/model/input_0.bin"; // predictor->GetPaddleTensor("fetch2", &tensor);
int main() { // for (int i = 0; i < post_nms; i++) {
paddle_mobile::fpga::open_device(); // auto p = reinterpret_cast<float *>(tensor.data.data());
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile; // std::cout << p[+i] << std::endl;
// }
// if (paddle_mobile.Load(std::string(g_rfcn_combine) + "/model",
// std::string(g_rfcn_combine) + "/params", true, false,
// 1, true)) {
if (paddle_mobile.Load(std::string(g_marker_combine), true)) {
float img_info[3] = {720, 1280, 800.0f / 960.0f};
auto img = reinterpret_cast<float *>(
fpga::fpga_malloc(720 * 1280 * 3 * sizeof(float)));
readStream(g_image_src_float, reinterpret_cast<char *>(img));
std::vector<void *> v(3, nullptr);
paddle_mobile.FeedData({img});
paddle_mobile.Predict_To(-1);
for (int i = 47; i < 52; i++) {
auto tensor_ptr = paddle_mobile.FetchResult(i);
std::string saveName = "marker_" + std::to_string(i);
// if(i != 58)
paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).get_data(),
tensor_ptr->numel() * sizeof(float));
// tensor_ptr->numel() * sizeof(float));
dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(),
true); // 20);//tensor_ptr->numel());
/* float result = 0;
std::string str = "softmax_input_data";
float* data =
static_cast<float*>(fpga::fpga_malloc(tensor_ptr->numel() *
sizeof(float))); str = "softmax_output_data"; auto output_ptr =
static_cast<half*>((*tensor_ptr).get_data()); for (int idx = 0; idx <
tensor_ptr->numel(); ++idx)
{
data[idx] = fpga::fp16_2_fp32(output_ptr[idx]);
}
fpga::savefile<float>(str,data, tensor_ptr->numel(), result ); */
}
// paddle_mobile.GetResults(&v);
DLOG << "Computation done";
fpga::fpga_free(img);
}
return 0; return 0;
} }
...@@ -15,12 +15,15 @@ limitations under the License. */ ...@@ -15,12 +15,15 @@ limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA #ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA #define PADDLE_MOBILE_FPGA
#endif #endif
#include <sys/time.h>
#include <time.h>
#include <fstream> #include <fstream>
#include <iomanip>
#include <iostream> #include <iostream>
#include "../../src/io/paddle_inference_api.h" #include "../../src/io/paddle_inference_api.h"
using namespace paddle_mobile; using namespace paddle_mobile; // NOLINT
using namespace paddle_mobile::fpga; using namespace paddle_mobile::fpga; // NOLINT
static const char *g_image = "../models/marker/model/image.bin"; static const char *g_image = "../models/marker/model/image.bin";
static const char *g_model = "../models/marker/model/model"; static const char *g_model = "../models/marker/model/model";
...@@ -136,44 +139,6 @@ PaddleMobileConfig GetConfig1() { ...@@ -136,44 +139,6 @@ PaddleMobileConfig GetConfig1() {
int main() { int main() {
open_device(); open_device();
PaddleMobileConfig config1 = GetConfig1();
auto predictor1 =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config1);
std::cout << "Finishing loading model" << std::endl;
for (int i = 0; i < 1; ++i) {
int img_length1 = 144 * 14 * 14;
auto img1 =
reinterpret_cast<float *>(fpga_malloc(img_length1 * sizeof(float)));
readStream(g_image1, reinterpret_cast<char *>(img1));
std::cout << "Finishing initializing data" << std::endl;
struct PaddleTensor t_img1;
t_img1.dtypeid = typeid(float);
t_img1.layout = LAYOUT_HWC;
t_img1.shape = std::vector<int>({1, 14, 14, 144});
t_img1.name = "Image information";
t_img1.data.Reset(img1, img_length1 * sizeof(float));
predictor1->FeedPaddleTensors({t_img1});
std::cout << "Finishing feeding data " << std::endl;
predictor1->Predict_From_To(0, -1);
std::cout << "Finishing predicting " << std::endl;
std::vector<paddle_mobile::PaddleTensor> v1; // No need to initialize v
predictor1->FetchPaddleTensors(&v1); // Old data in v will be cleared
std::cout << "Output number is " << v1.size() << std::endl;
for (int fetchNum = 0; fetchNum < v1.size(); fetchNum++) {
std::string dumpName = "marker2_api_fetch_" + std::to_string(fetchNum);
dump_stride(dumpName, v1[fetchNum]);
}
}
/////////////////////////////////////
PaddleMobileConfig config = GetConfig(); PaddleMobileConfig config = GetConfig();
auto predictor = auto predictor =
CreatePaddlePredictor<PaddleMobileConfig, CreatePaddlePredictor<PaddleMobileConfig,
...@@ -207,7 +172,16 @@ int main() { ...@@ -207,7 +172,16 @@ int main() {
std::cout << "Finishing feeding data " << std::endl; std::cout << "Finishing feeding data " << std::endl;
timeval start11, end11;
long dif_sec, dif_usec; // NOLINT
gettimeofday(&start11, NULL);
predictor->Predict_From_To(0, -1); predictor->Predict_From_To(0, -1);
gettimeofday(&end11, NULL);
dif_sec = end11.tv_sec - start11.tv_sec;
dif_usec = end11.tv_usec - start11.tv_usec;
std::cout << "marker1 total"
<< " cost time: " << (dif_sec * 1000000 + dif_usec) << " us"
<< std::endl;
std::cout << "Finishing predicting " << std::endl; std::cout << "Finishing predicting " << std::endl;
std::vector<paddle_mobile::PaddleTensor> v; // No need to initialize v std::vector<paddle_mobile::PaddleTensor> v; // No need to initialize v
...@@ -217,5 +191,48 @@ int main() { ...@@ -217,5 +191,48 @@ int main() {
std::string dumpName = "marker_api_fetch_" + std::to_string(fetchNum); std::string dumpName = "marker_api_fetch_" + std::to_string(fetchNum);
dump_stride(dumpName, v[fetchNum]); dump_stride(dumpName, v[fetchNum]);
} }
PaddleMobileConfig config1 = GetConfig1();
auto predictor1 =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config1);
std::cout << "Finishing loading model" << std::endl;
for (int i = 0; i < 1; ++i) {
int img_length1 = 144 * 14 * 14;
auto img1 =
reinterpret_cast<float *>(fpga_malloc(img_length1 * sizeof(float)));
readStream(g_image1, reinterpret_cast<char *>(img1));
std::cout << "Finishing initializing data" << std::endl;
struct PaddleTensor t_img1;
t_img1.dtypeid = typeid(float);
t_img1.layout = LAYOUT_HWC;
t_img1.shape = std::vector<int>({1, 14, 14, 144});
t_img1.name = "Image information";
t_img1.data.Reset(img1, img_length1 * sizeof(float));
predictor1->FeedPaddleTensors({t_img1});
std::cout << "Finishing feeding data " << std::endl;
gettimeofday(&start11, NULL);
predictor1->Predict_From_To(0, -1);
gettimeofday(&end11, NULL);
dif_sec = end11.tv_sec - start11.tv_sec;
dif_usec = end11.tv_usec - start11.tv_usec;
std::cout << "marker2 total"
<< " cost time: " << (dif_sec * 1000000 + dif_usec) << " us"
<< std::endl;
std::cout << "Finishing predicting " << std::endl;
std::vector<paddle_mobile::PaddleTensor> v1; // No need to initialize v
predictor1->FetchPaddleTensors(&v1); // Old data in v will be cleared
std::cout << "Output number is " << v1.size() << std::endl;
for (int fetchNum = 0; fetchNum < v1.size(); fetchNum++) {
std::string dumpName = "marker2_api_fetch_" + std::to_string(fetchNum);
dump_stride(dumpName, v1[fetchNum]);
}
}
return 0; return 0;
} }
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册