Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4dd6a4b8
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4dd6a4b8
编写于
12月 21, 2019
作者:
Z
zhupengyang
提交者:
GitHub
12月 21, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] add layer_norm bridge and unit test (#2640)
test=develop
上级
f59e1b60
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
256 addition
and
1 deletion
+256
-1
lite/kernels/xpu/bridges/CMakeLists.txt
lite/kernels/xpu/bridges/CMakeLists.txt
+2
-0
lite/kernels/xpu/bridges/layer_norm_op.cc
lite/kernels/xpu/bridges/layer_norm_op.cc
+69
-0
lite/operators/layer_norm_op.cc
lite/operators/layer_norm_op.cc
+1
-1
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-0
lite/tests/kernels/layer_norm_compute_test.cc
lite/tests/kernels/layer_norm_compute_test.cc
+183
-0
未找到文件。
lite/kernels/xpu/bridges/CMakeLists.txt
浏览文件 @
4dd6a4b8
...
...
@@ -16,6 +16,7 @@ lite_cc_library(subgraph_bridge_mul_op_xpu SRCS mul_op.cc DEPS ${xpu_subgraph_br
lite_cc_library
(
subgraph_bridge_batch_norm_op_xpu SRCS batch_norm_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_transpose_op_xpu SRCS transpose_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_reshape_op_xpu SRCS reshape_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_layer_norm_op_xpu SRCS layer_norm_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
set
(
xpu_subgraph_bridges
subgraph_bridge_registry
...
...
@@ -30,6 +31,7 @@ set(xpu_subgraph_bridges
subgraph_bridge_batch_norm_op_xpu
subgraph_bridge_transpose_op_xpu
subgraph_bridge_reshape_op_xpu
subgraph_bridge_layer_norm_op_xpu
CACHE INTERNAL
"xpu_subgraph_bridges"
)
message
(
STATUS
"+++++ xpu_subgraph_bridges:
${
xpu_subgraph_bridges
}
"
)
lite/kernels/xpu/bridges/layer_norm_op.cc
0 → 100644
浏览文件 @
4dd6a4b8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
xpu
{
int
LayerNormConverter
(
void
*
ctx
,
OpLite
*
op
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[XPU] Converting "
+
op_type
+
"..."
;
// Get input vars and op attributes
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
scale_var_name
=
op_info
->
Input
(
"Scale"
).
front
();
auto
*
scale
=
scope
->
FindMutableTensor
(
scale_var_name
);
auto
bias_var_name
=
op_info
->
Input
(
"Bias"
).
front
();
auto
*
bias
=
scope
->
FindMutableTensor
(
bias_var_name
);
auto
y_var_name
=
op_info
->
Output
(
"Y"
).
front
();
auto
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"begin_norm_axis"
);
// Create scale, bias nodes
auto
scale_const_node
=
graph
->
AddNode
(
scale_var_name
,
*
scale
);
auto
bias_const_node
=
graph
->
AddNode
(
bias_var_name
,
*
bias
);
// Create node and set params from op
auto
layer_norm_node
=
graph
->
builder_
.
CreateLayerNorm
(
*
graph
->
GetNode
(
x_var_name
),
*
scale_const_node
,
*
bias_const_node
,
axis
,
epsilon
,
true
,
true
);
graph
->
AddNode
(
y_var_name
,
graph
->
builder_
.
GetField
(
layer_norm_node
,
0
));
return
SUCCESS
;
}
}
// namespace xpu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
XPU
,
layer_norm
,
paddle
::
lite
::
subgraph
::
xpu
::
LayerNormConverter
);
lite/operators/layer_norm_op.cc
浏览文件 @
4dd6a4b8
...
...
@@ -30,7 +30,7 @@ bool LayerNormOp::CheckShape() const {
bool
LayerNormOp
::
InferShape
()
const
{
auto
out_dims
=
param_
.
X
->
dims
();
param_
.
Y
->
Resize
(
out_dims
);
auto
inner_size
=
out_dims
.
Flatten2D
(
param_
.
begin_norm_axis
)[
1
];
auto
inner_size
=
out_dims
.
Flatten2D
(
param_
.
begin_norm_axis
)[
0
];
param_
.
Mean
->
Resize
(
std
::
vector
<
int64_t
>
({
inner_size
}));
param_
.
Variance
->
Resize
(
std
::
vector
<
int64_t
>
({
inner_size
}));
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
4dd6a4b8
...
...
@@ -26,6 +26,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
lite_cc_test
(
test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/layer_norm_compute_test.cc
0 → 100644
浏览文件 @
4dd6a4b8
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace
paddle
{
namespace
lite
{
class
LayerNormComputeTest
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
op_type_
=
"layer_norm"
;
std
::
string
input_
=
"x"
;
std
::
string
scale_
=
"scale"
;
std
::
string
bias_
=
"bias"
;
std
::
string
output_
=
"y"
;
std
::
string
mean_
=
"mean"
;
std
::
string
variance_
=
"variance"
;
DDim
dims_
{{
4
,
5
,
19
,
19
}};
float
epsilon_
=
1e-5
f
;
int
begin_norm_axis_
=
1
;
bool
has_bias_
=
true
;
bool
has_scale_
=
true
;
public:
LayerNormComputeTest
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
dims
,
float
epsilon
,
int
begin_norm_axis
,
bool
has_bias
,
bool
has_scale
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
),
epsilon_
(
epsilon
),
begin_norm_axis_
(
begin_norm_axis
),
has_bias_
(
has_bias
),
has_scale_
(
has_scale
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
x
=
scope
->
FindTensor
(
input_
);
auto
scale
=
scope
->
FindTensor
(
scale_
);
auto
bias
=
scope
->
FindTensor
(
bias_
);
auto
y
=
scope
->
NewTensor
(
output_
);
auto
mean
=
scope
->
NewTensor
(
mean_
);
auto
variance
=
scope
->
NewTensor
(
variance_
);
CHECK
(
y
);
CHECK
(
mean
);
CHECK
(
variance
);
y
->
Resize
(
dims_
);
auto
matrix_dim
=
dims_
.
Flatten2D
(
begin_norm_axis_
);
int
batch_size
=
matrix_dim
[
0
];
int
feature_size
=
matrix_dim
[
1
];
mean
->
Resize
(
std
::
vector
<
int64_t
>
{
batch_size
});
variance
->
Resize
(
std
::
vector
<
int64_t
>
{
batch_size
});
auto
*
x_data
=
x
->
data
<
float
>
();
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
float
>
());
auto
*
bias_data
=
(
bias
==
nullptr
?
nullptr
:
bias
->
data
<
float
>
());
auto
*
out_data
=
y
->
mutable_data
<
float
>
();
auto
*
mean_data
=
mean
->
mutable_data
<
float
>
();
auto
*
variance_data
=
variance
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
start
=
i
*
feature_size
;
int
end
=
start
+
feature_size
;
float
mean_t
=
0
;
float
variance_t
=
0
;
for
(
int
j
=
start
;
j
<
end
;
++
j
)
{
mean_t
+=
x_data
[
j
];
variance_t
+=
x_data
[
j
]
*
x_data
[
j
];
}
mean_t
/=
feature_size
;
variance_t
=
variance_t
/
feature_size
-
mean_t
*
mean_t
;
mean_data
[
i
]
=
mean_t
;
variance_data
[
i
]
=
variance_t
;
variance_t
=
sqrt
(
variance_t
+
epsilon_
);
for
(
int
j
=
start
;
j
<
end
;
++
j
)
{
out_data
[
j
]
=
(
x_data
[
j
]
-
mean_t
)
/
variance_t
;
if
(
scale_data
)
{
out_data
[
j
]
*=
scale_data
[
j
-
start
];
}
if
(
bias_data
)
{
out_data
[
j
]
+=
bias_data
[
j
-
start
];
}
}
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
op_type_
);
op_desc
->
SetInput
(
"X"
,
{
input_
});
op_desc
->
SetInput
(
"Bias"
,
{
bias_
});
op_desc
->
SetInput
(
"Scale"
,
{
scale_
});
op_desc
->
SetOutput
(
"Y"
,
{
output_
});
op_desc
->
SetOutput
(
"Mean"
,
{
mean_
});
op_desc
->
SetOutput
(
"Variance"
,
{
variance_
});
op_desc
->
SetAttr
(
"epsilon"
,
epsilon_
);
op_desc
->
SetAttr
(
"begin_norm_axis"
,
begin_norm_axis_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
din
(
dims_
.
production
());
fill_data_rand
(
din
.
data
(),
-
1.
f
,
1.
f
,
dims_
.
production
());
std
::
vector
<
int64_t
>
scale_v
;
for
(
size_t
i
=
begin_norm_axis_
;
i
<
dims_
.
size
();
i
++
)
{
scale_v
.
push_back
(
dims_
[
i
]);
}
DDim
scale_dim
(
scale_v
);
std
::
vector
<
float
>
scale
(
scale_dim
.
production
());
fill_data_rand
(
scale
.
data
(),
-
1.
f
,
1.
f
,
scale_dim
.
production
());
std
::
vector
<
float
>
bias
(
scale_dim
.
production
());
fill_data_rand
(
bias
.
data
(),
-
1.
f
,
1.
f
,
scale_dim
.
production
());
SetCommonTensor
(
input_
,
dims_
,
din
.
data
());
SetCommonTensor
(
scale_
,
scale_dim
,
scale
.
data
());
SetCommonTensor
(
bias_
,
scale_dim
,
bias
.
data
());
}
};
TEST
(
LayerNorm
,
precision
)
{
LOG
(
INFO
)
<<
"test layer_norm op"
;
float
abs_error
=
2e-5
;
Place
place
;
#if defined(LITE_WITH_XPU)
place
=
TARGET
(
kXPU
);
#elif defined(LITE_WITH_ARM)
place
=
TARGET
(
kARM
);
abs_error
=
6e-5
;
#else
return
;
#endif
std
::
vector
<
std
::
vector
<
int64_t
>>
dims
{{
1
,
2
,
3
,
4
},
{
2
,
3
,
4
},
{
3
,
4
}};
for
(
auto
dim_in
:
dims
)
{
for
(
auto
epsilon
:
{
1e-5
f
})
{
for
(
auto
axis
:
{
0
,
1
,
2
,
3
})
{
for
(
bool
has_bias
:
{
true
,
false
})
{
for
(
bool
has_scale
:
{
true
,
false
})
{
if
(
axis
>=
dim_in
.
size
())
continue
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
LayerNormComputeTest
(
place
,
"def"
,
DDim
(
dim_in
),
epsilon
,
axis
,
has_bias
,
has_scale
));
#ifdef LITE_WITH_ARM
auto
&
ctx
=
tester
->
context
()
->
As
<
ARMContext
>
();
ctx
.
SetRunMode
(
lite_api
::
LITE_POWER_HIGH
,
4
);
#endif
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
({
"mean"
,
"variance"
});
}
}
}
}
}
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录