Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4d05a8c6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d05a8c6
编写于
11月 13, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Transform kernel in op initialization
上级
3076c54f
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
199 addition
and
285 deletion
+199
-285
src/framework/operator.h
src/framework/operator.h
+1
-4
src/framework/tensor.h
src/framework/tensor.h
+0
-16
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+53
-1
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+30
-40
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+1
-1
src/operators/math/winograd/winograd.cpp
src/operators/math/winograd/winograd.cpp
+0
-55
src/operators/math/winograd/winograd.h
src/operators/math/winograd/winograd.h
+0
-40
src/operators/math/winograd/winograd_transform_f6k3.cpp
src/operators/math/winograd/winograd_transform_f6k3.cpp
+28
-45
src/operators/op_param.h
src/operators/op_param.h
+17
-4
test/CMakeLists.txt
test/CMakeLists.txt
+1
-5
test/operators/test_conv_op.cpp
test/operators/test_conv_op.cpp
+68
-30
test/operators/test_cov_op.cpp
test/operators/test_cov_op.cpp
+0
-44
未找到文件。
src/framework/operator.h
浏览文件 @
4d05a8c6
...
@@ -16,6 +16,7 @@ limitations under the License. */
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <map>
#include <map>
#include <string>
#include <string>
#include <utility>
#include <vector>
#include <vector>
#include "common/enforce.h"
#include "common/enforce.h"
...
@@ -119,10 +120,6 @@ class OperatorWithKernel : public OperatorBase<Dtype> {
...
@@ -119,10 +120,6 @@ class OperatorWithKernel : public OperatorBase<Dtype> {
virtual
void
InferShape
()
const
=
0
;
virtual
void
InferShape
()
const
=
0
;
void
Init
()
{
void
Init
()
{
// for (auto i : this->inputs_) {
// DLOG << i.first;
// DLOG << i.second;
// }
PADDLE_MOBILE_ENFORCE
(
kernel_
.
Init
(
&
param_
),
" %s kernel init failed"
,
PADDLE_MOBILE_ENFORCE
(
kernel_
.
Init
(
&
param_
),
" %s kernel init failed"
,
this
->
type_
.
c_str
());
this
->
type_
.
c_str
());
}
}
...
...
src/framework/tensor.h
浏览文件 @
4d05a8c6
...
@@ -135,22 +135,6 @@ class Tensor {
...
@@ -135,22 +135,6 @@ class Tensor {
return
reinterpret_cast
<
T
*>
(
mutable_data
(
typeid
(
T
)));
return
reinterpret_cast
<
T
*>
(
mutable_data
(
typeid
(
T
)));
}
}
#ifdef PADDLE_MOBILE_DEBUG
template
<
typename
T
>
inline
void
dump
(
std
::
string
filename
)
const
{
const
T
*
dataptr
=
data
<
T
>
();
std
::
ofstream
out
(
filename
.
c_str
());
for
(
int
i
=
0
;
i
<
numel
();
++
i
)
{
out
<<
dataptr
[
i
]
<<
" "
;
}
out
<<
"形状:"
;
for
(
int
j
=
0
;
j
<
dims_
.
size
();
++
j
)
{
out
<<
dims_
[
j
]
<<
" "
;
}
out
.
close
();
}
#endif
inline
void
*
mutable_data
(
std
::
type_index
type
)
{
inline
void
*
mutable_data
(
std
::
type_index
type
)
{
if
(
holder_
!=
nullptr
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
holder_
->
set_type
(
type
);
...
...
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
4d05a8c6
...
@@ -17,17 +17,69 @@ limitations under the License. */
...
@@ -17,17 +17,69 @@ limitations under the License. */
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/central-arm-func/conv_arm_func.h"
#include "operators/kernel/central-arm-func/conv_arm_func.h"
#include <iostream>
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
template
<
>
template
<
>
bool
ConvKernel
<
CPU
,
float
>::
Init
(
ConvParam
<
CPU
>
*
param
)
{
bool
ConvKernel
<
CPU
,
float
>::
Init
(
ConvParam
<
CPU
>
*
param
)
{
if
(
param
->
Input
()
->
type
()
==
typeid
(
int8_t
))
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_GEMM_INT8
;
}
else
{
if
(
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Strides
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S1P1_FLOAT
;
}
else
if
(
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3_FLOAT
;
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Dilations
()[
0
]
==
param
->
Dilations
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
&&
param
->
Output
()
->
dims
()[
1
]
>=
16
&&
param
->
Input
()
->
dims
()[
2
]
>=
16
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
;
// transform weight
framework
::
Tensor
*
transformed_weight
=
new
framework
::
Tensor
;
operators
::
math
::
winograd_transform_weight
<
8
,
3
>
(
*
param
->
Filter
(),
transformed_weight
);
param
->
Filter
()
=
transformed_weight
;
}
else
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
;
}
}
return
true
;
return
true
;
}
}
template
<
>
template
<
>
void
ConvKernel
<
CPU
,
float
>::
Compute
(
const
ConvParam
<
CPU
>
&
param
)
const
{
void
ConvKernel
<
CPU
,
float
>::
Compute
(
const
ConvParam
<
CPU
>
&
param
)
const
{
ConvCompute
<
float
>
(
param
);
switch
(
param
.
ExecMode
())
{
case
ConvParam
<
CPU
>::
EXEC_GEMM_INT8
:
GemmConv
<
int8_t
,
int32_t
>
(
param
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S1P1_FLOAT
:
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3_FLOAT
:
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
break
;
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
break
;
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
GemmConv
<
float
,
float
>
(
param
);
break
;
default:
PADDLE_MOBILE_THROW_EXCEPTION
(
"Invalid convolution execute mode %d"
,
param
.
ExecMode
());
}
}
}
template
class
ConvKernel
<
CPU
,
float
>;
template
class
ConvKernel
<
CPU
,
float
>;
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
4d05a8c6
...
@@ -22,14 +22,14 @@ limitations under the License. */
...
@@ -22,14 +22,14 @@ limitations under the License. */
#include "operators/math/math_function.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
#include "operators/math/pad.h"
#include "operators/math/vol2col.h"
#include "operators/math/vol2col.h"
#include "operators/math/winograd/winograd.h"
#include "operators/math/winograd/winograd
_transform
.h"
#include "operators/op_param.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
template
<
typename
Itype
,
typename
Otype
>
template
<
typename
Itype
,
typename
Otype
>
inline
void
ConvBasic
(
const
ConvParam
<
CPU
>
&
param
)
{
inline
void
GemmConv
(
const
ConvParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
Tensor
*
output
=
param
.
Output
();
...
@@ -117,9 +117,10 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
...
@@ -117,9 +117,10 @@ inline void ConvBasic(const ConvParam<CPU> ¶m) {
}
}
}
}
inline
void
BatchConv3x3Winograd
(
const
ConvParam
<
CPU
>
&
param
)
{
template
<
int
tile
,
int
kernel
>
inline
void
WinogradConv3x3
(
const
ConvParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
const
Tensor
*
input
=
param
.
Input
();
Tensor
*
filter
=
param
.
Filter
();
const
Tensor
*
filter
=
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
output
->
mutable_data
<
float
>
();
int
batch_size
=
input
->
dims
()[
0
];
int
batch_size
=
input
->
dims
()[
0
];
...
@@ -127,51 +128,40 @@ inline void BatchConv3x3Winograd(const ConvParam<CPU> ¶m) {
...
@@ -127,51 +128,40 @@ inline void BatchConv3x3Winograd(const ConvParam<CPU> ¶m) {
const
std
::
vector
<
int
>
&
paddings
=
param
.
Paddings
();
const
std
::
vector
<
int
>
&
paddings
=
param
.
Paddings
();
math
::
PadFunctor
<
CPU
,
float
>
pad
;
math
::
PadFunctor
<
CPU
,
float
>
pad
;
auto
winograd_pad
=
[
&
](
int
width
,
int
pad
)
{
int
output_tile
=
tile
-
kernel
+
1
;
// int tiles = (width + pad - kernel) / output_tile + 1;
// return (tiles - 1) * output_tile + tile - width;
int
pad_width
=
(
width
+
2
*
pad
-
kernel
)
/
output_tile
*
output_tile
;
return
pad_width
+
tile
-
width
;
};
Tensor
input_pad
;
Tensor
input_pad
;
framework
::
Tensor
transformed_input
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
);
i
f
(
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
{
i
nt
pad_bottom
=
winograd_pad
(
in_batch
.
dims
()[
2
],
paddings
[
0
]);
input_pad
=
in_batch
;
int
pad_right
=
winograd_pad
(
in_batch
.
dims
()[
3
],
paddings
[
1
])
;
}
else
{
if
(
paddings
[
0
]
||
paddings
[
1
]
||
pad_bottom
||
pad_right
)
{
framework
::
DDim
pad_shape
=
in_batch
.
dims
();
framework
::
DDim
pad_shape
=
in_batch
.
dims
();
pad_shape
[
2
]
+=
2
*
paddings
[
0
]
;
pad_shape
[
2
]
+=
paddings
[
0
]
+
pad_bottom
;
pad_shape
[
3
]
+=
2
*
paddings
[
1
]
;
pad_shape
[
3
]
+=
paddings
[
1
]
+
pad_right
;
input_pad
.
mutable_data
<
float
>
(
pad_shape
);
input_pad
.
mutable_data
<
float
>
(
pad_shape
);
pad
(
in_batch
,
paddings
[
0
],
pad
dings
[
0
],
paddings
[
1
],
paddings
[
1
]
,
pad
(
in_batch
,
paddings
[
0
],
pad
_bottom
,
paddings
[
1
],
pad_right
,
&
input_pad
);
&
input_pad
);
}
math
::
winograd_f6k3
(
input_pad
,
*
filter
,
&
out_batch
);
}
}
template
<
typename
P
>
void
ConvCompute
(
const
ConvParam
<
CPU
>
&
param
)
{
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
ConvBasic
<
int8_t
,
int32_t
>
(
param
);
}
else
{
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
}
else
if
(
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Strides
()[
0
]
==
param
.
Strides
()[
1
]
&&
param
.
Dilations
()[
0
]
==
param
.
Dilations
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
&&
param
.
Dilations
()[
0
]
==
1
&&
param
.
Output
()
->
dims
()[
1
]
>=
16
&&
param
.
Output
()
->
dims
()[
2
]
>=
16
)
{
BatchConv3x3Winograd
(
param
);
}
else
{
}
else
{
ConvBasic
<
float
,
float
>
(
param
)
;
input_pad
=
in_batch
;
}
}
#if __aarch64__
// TODO(hjchen2)
#else
// tile input and transform
math
::
winograd_transform_input
<
tile
,
kernel
>
(
input_pad
,
&
transformed_input
);
// caculate output
math
::
winograd_transform_output
<
tile
,
kernel
>
(
transformed_input
,
*
filter
,
output
);
#endif
}
}
}
}
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
4d05a8c6
...
@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> ¶m) {
...
@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> ¶m) {
Bias
,
false
);
Bias
,
false
);
}
else
{
}
else
{
ConvBasic
<
float
,
float
>
(
param
);
GemmConv
<
float
,
float
>
(
param
);
}
}
}
}
...
...
src/operators/math/winograd/winograd.cpp
已删除
100644 → 0
浏览文件 @
3076c54f
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/math/winograd/winograd.h"
#include "operators/math/winograd/winograd_transform.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// F(2X2, 3X3)
void
winograd_f2k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
}
// F(6X6, 3X3)
void
winograd_f6k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
transformed_input
;
framework
::
Tensor
transformed_weight
;
#if __aarch64__
// TODO(hjchen2)
#else
// transform weight
winograd_transform_weight
<
8
,
3
>
(
weight
,
&
transformed_weight
);
// tile input and transform
winograd_transform_input
<
8
,
3
>
(
input
,
&
transformed_input
);
// caculate output
winograd_transform_output
<
8
,
3
>
(
transformed_input
,
transformed_weight
,
output
);
#endif
}
// F(4X4, 5X5)
void
winograd_f4k5
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/winograd/winograd.h
已删除
100644 → 0
浏览文件 @
3076c54f
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// F(2X2, 3X3)
void
winograd_f2k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
// F(6X6, 3X3)
void
winograd_f6k3
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
// F(4X4, 5X5)
void
winograd_f4k5
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/winograd/winograd_transform_f6k3.cpp
浏览文件 @
4d05a8c6
...
@@ -40,6 +40,7 @@ void winograd_transform_weight<8, 3>(const framework::Tensor &weight,
...
@@ -40,6 +40,7 @@ void winograd_transform_weight<8, 3>(const framework::Tensor &weight,
* w7 = g2
* w7 = g2
*/
*/
// weight shape is [out_channel, in_channel, kernel_h, kernel_w]
// weight shape is [out_channel, in_channel, kernel_h, kernel_w]
// package weight into [roundup(out_channel/4), 64, in_channel, 4] tiles
int
out_channel
=
weight
.
dims
()[
0
];
int
out_channel
=
weight
.
dims
()[
0
];
int
in_channel
=
weight
.
dims
()[
1
];
int
in_channel
=
weight
.
dims
()[
1
];
// reshape and alloc transformed weight
// reshape and alloc transformed weight
...
@@ -322,12 +323,12 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -322,12 +323,12 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
* x6 = (4 * d2 - 5 * d4 + d6) - (2 * d1 - 2.5 * d3 + 0.5 * d5)
* x6 = (4 * d2 - 5 * d4 + d6) - (2 * d1 - 2.5 * d3 + 0.5 * d5)
* x7 = (d7 - d1) + (d3 - d5) * 5.25
* x7 = (d7 - d1) + (d3 - d5) * 5.25
*/
*/
// pack
input to [8 * roundup(h/6), 8 * roundup(w/6), channel
] tiles
// pack
age input into [roundup(tiles/8), 64, channel, 8
] tiles
int
channel
=
input
.
dims
()[
1
];
int
channel
=
input
.
dims
()[
1
];
int
height
=
input
.
dims
()[
2
];
int
height
=
input
.
dims
()[
2
];
int
width
=
input
.
dims
()[
3
];
int
width
=
input
.
dims
()[
3
];
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height
+ 5 - 2
) / 6
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height
- 8 + 5 + 6
) / 6
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width
+ 5 - 2
) / 6
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width
- 8 + 5 + 6
) / 6
int
tiles
=
(
h_tiles
*
w_tiles
+
7
)
/
8
;
int
tiles
=
(
h_tiles
*
w_tiles
+
7
)
/
8
;
framework
::
DDim
transformed_shape
=
framework
::
DDim
transformed_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
tiles
,
64
,
channel
,
8
});
framework
::
make_ddim
(
std
::
vector
<
int
>
{
tiles
,
64
,
channel
,
8
});
...
@@ -335,29 +336,11 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -335,29 +336,11 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
memset
(
outptr
,
0
,
output
->
numel
()
*
sizeof
(
float
));
memset
(
outptr
,
0
,
output
->
numel
()
*
sizeof
(
float
));
const
float
*
inptr
=
input
.
data
<
float
>
();
const
float
*
inptr
=
input
.
data
<
float
>
();
int
inter_h
=
(
height
-
2
)
/
6
;
int
inter_w
=
(
width
-
2
)
/
6
;
int
remain_h
=
height
-
(
inter_h
*
6
);
int
remain_w
=
width
-
(
inter_w
*
6
);
framework
::
Tensor
input_pad
;
if
(
remain_h
>
2
||
remain_w
>
2
)
{
inter_h
+=
(
remain_h
>
2
);
inter_w
+=
(
remain_w
>
2
);
height
=
(
inter_h
-
1
)
*
6
+
8
;
width
=
(
inter_w
-
1
)
*
6
+
8
;
framework
::
DDim
input_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
1
,
channel
,
height
,
width
});
PadFunctor
<
CPU
,
float
>
pad
;
inptr
=
input_pad
.
mutable_data
<
float
>
(
input_shape
);
pad
(
input
,
0
,
height
-
input
.
dims
()[
2
],
0
,
width
-
input
.
dims
()[
3
],
&
input_pad
);
}
size_t
image_size
=
height
*
width
;
size_t
image_size
=
height
*
width
;
const
float
transform_matrix
[
8
]
=
{
5.25
f
,
-
5.
f
,
-
4.25
f
,
-
2.5
f
,
const
float
transform_matrix
[
8
]
=
{
5.25
f
,
-
5.
f
,
-
4.25
f
,
-
2.5
f
,
2.
f
,
-
1.25
f
,
0.5
f
,
0.25
f
};
2.
f
,
-
1.25
f
,
0.5
f
,
0.25
f
};
int
remain_c_start
=
channel
&
0xFFFC
;
int
remain_c_start
=
channel
&
0xFFFC
;
#if
0
#if
1
remain_c_start
=
0
;
remain_c_start
=
0
;
#else
#else
#pragma omp parallel for
#pragma omp parallel for
...
@@ -381,14 +364,14 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -381,14 +364,14 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
"vld1.32 {d8-d11}, [%[in1]], %[steps]
\n
"
"vld1.32 {d8-d11}, [%[in1]], %[steps]
\n
"
"vld1.32 {d12-d15}, [%[in2]], %[steps]
\n
"
"vld1.32 {d12-d15}, [%[in2]], %[steps]
\n
"
"vld1.32 {d16-d19}, [%[in3]], %[steps]
\n
"
"vld1.32 {d16-d19}, [%[in3]], %[steps]
\n
"
"vtrn.32 q2, q4
\n
"
// d0: q2
, q2
"vtrn.32 q2, q4
\n
"
// d0: q2
"vtrn.32 q3, q5
\n
"
// d1: q4
, q3
"vtrn.32 q3, q5
\n
"
// d1: q4
"vtrn.32 q6, q8
\n
"
// d2: q6
, q4
"vtrn.32 q6, q8
\n
"
// d2: q6
"vtrn.32 q7, q9
\n
"
// d3: q8
, q5
"vtrn.32 q7, q9
\n
"
// d3: q8
"vswp.32 d5, d12
\n
"
// d4: q3
, q6
"vswp.32 d5, d12
\n
"
// d4: q3
"vswp.32 d9, d16
\n
"
// d5: q5
, q7
"vswp.32 d9, d16
\n
"
// d5: q5
"vswp.32 d7, d14
\n
"
// d6: q7
, q8
"vswp.32 d7, d14
\n
"
// d6: q7
"vswp.32 d11, d18
\n
"
// d7: q9
, q9
"vswp.32 d11, d18
\n
"
// d7: q9
"vsub.f32 q10, q2, q7
\n
"
"vsub.f32 q10, q2, q7
\n
"
"vsub.f32 q11, q3, q6
\n
"
"vsub.f32 q11, q3, q6
\n
"
...
@@ -680,14 +663,14 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -680,14 +663,14 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
"vld1.32 {d8-d11}, [%[in1]], %[steps]
\n
"
"vld1.32 {d8-d11}, [%[in1]], %[steps]
\n
"
"vld1.32 {d12-d15}, [%[in2]], %[steps]
\n
"
"vld1.32 {d12-d15}, [%[in2]], %[steps]
\n
"
"vld1.32 {d16-d19}, [%[in3]], %[steps]
\n
"
"vld1.32 {d16-d19}, [%[in3]], %[steps]
\n
"
"vtrn.32 q2, q4
\n
"
// d0: q2
, q2
"vtrn.32 q2, q4
\n
"
// d0: q2
"vtrn.32 q3, q5
\n
"
// d1: q4
, q3
"vtrn.32 q3, q5
\n
"
// d1: q4
"vtrn.32 q6, q8
\n
"
// d2: q6
, q4
"vtrn.32 q6, q8
\n
"
// d2: q6
"vtrn.32 q7, q9
\n
"
// d3: q8
, q5
"vtrn.32 q7, q9
\n
"
// d3: q8
"vswp.32 d5, d12
\n
"
// d4: q3
, q6
"vswp.32 d5, d12
\n
"
// d4: q3
"vswp.32 d9, d16
\n
"
// d5: q5
, q7
"vswp.32 d9, d16
\n
"
// d5: q5
"vswp.32 d7, d14
\n
"
// d6: q7
, q8
"vswp.32 d7, d14
\n
"
// d6: q7
"vswp.32 d11, d18
\n
"
// d7: q9
, q9
"vswp.32 d11, d18
\n
"
// d7: q9
"vsub.f32 q10, q2, q7
\n
"
"vsub.f32 q10, q2, q7
\n
"
"vsub.f32 q11, q3, q6
\n
"
"vsub.f32 q11, q3, q6
\n
"
...
@@ -749,11 +732,12 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -749,11 +732,12 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
float
*
ptr0
=
d_bt
;
float
*
ptr0
=
d_bt
;
float
*
ptr1
=
ptr0
+
32
;
float
*
ptr1
=
ptr0
+
32
;
int
tile_i
d
=
h
*
w_tiles
+
w
;
int
tile_i
ndics
=
h
*
w_tiles
+
w
;
int
block_id
=
tile_id
>>
3
;
int
tile_block
=
tile_indics
>>
3
;
int
pack_id
=
tile_id
&
0x7
;
int
block_indics
=
tile_indics
&
0x7
;
// (tiles / 8, 64, channel, 8)
// (tiles / 8, 64, channel, 8)
float
*
out0
=
outptr
+
(
block_id
*
64
*
channel
+
c
)
*
8
+
pack_id
;
float
*
out0
=
outptr
+
(
tile_block
*
64
*
channel
+
c
)
*
8
+
block_indics
;
float
*
out1
=
out0
+
channel
*
8
;
float
*
out1
=
out0
+
channel
*
8
;
float
*
out2
=
out1
+
channel
*
8
;
float
*
out2
=
out1
+
channel
*
8
;
float
*
out3
=
out2
+
channel
*
8
;
float
*
out3
=
out2
+
channel
*
8
;
...
@@ -771,7 +755,6 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
...
@@ -771,7 +755,6 @@ void winograd_transform_input<8, 3>(const framework::Tensor &input,
"vld1.32 {d8-d11}, [%[ptr0]]!
\n
"
// q4: d2, q5: d3
"vld1.32 {d8-d11}, [%[ptr0]]!
\n
"
// q4: d2, q5: d3
"vld1.32 {d12-d15}, [%[ptr1]]!
\n
"
// q6: d4, q7: d5
"vld1.32 {d12-d15}, [%[ptr1]]!
\n
"
// q6: d4, q7: d5
"vld1.32 {d16-d19}, [%[ptr1]]!
\n
"
// q8: d6, q9: d7
"vld1.32 {d16-d19}, [%[ptr1]]!
\n
"
// q8: d6, q9: d7
"vtrn.32 q2, q3
\n
"
"vtrn.32 q2, q3
\n
"
"vtrn.32 q4, q5
\n
"
"vtrn.32 q4, q5
\n
"
"vtrn.32 q6, q7
\n
"
"vtrn.32 q6, q7
\n
"
...
@@ -918,7 +901,7 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -918,7 +901,7 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
"cmp %[inter_channel], #0
\n
"
"cmp %[inter_channel], #0
\n
"
"ble cmp_remain_%=
\n
"
"ble cmp_remain_%=
\n
"
"loop_
4
c_%=:
\n
"
"loop_
2
c_%=:
\n
"
"vld1.32 {d0-d3}, [%[w_ptr]]!
\n
"
"vld1.32 {d0-d3}, [%[w_ptr]]!
\n
"
"vld1.32 {d4-d7}, [%[in_ptr]]!
\n
"
"vld1.32 {d4-d7}, [%[in_ptr]]!
\n
"
"vmla.f32 q8, q2, d0[0]
\n
"
"vmla.f32 q8, q2, d0[0]
\n
"
...
@@ -941,7 +924,7 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
...
@@ -941,7 +924,7 @@ void winograd_transform_output<8, 3>(const framework::Tensor &input,
"vmla.f32 q15, q5, d3[1]
\n
"
"vmla.f32 q15, q5, d3[1]
\n
"
"subs %[inter_channel], #1
\n
"
"subs %[inter_channel], #1
\n
"
"bne loop_
4
c_%=
\n
"
"bne loop_
2
c_%=
\n
"
// cmp remain channel > 0
// cmp remain channel > 0
"cmp_remain_%=:
\n
"
"cmp_remain_%=:
\n
"
...
...
src/operators/op_param.h
浏览文件 @
4d05a8c6
...
@@ -379,9 +379,9 @@ class ConvParam : public OpParam {
...
@@ -379,9 +379,9 @@ class ConvParam : public OpParam {
const
RType
*
Input
()
const
{
return
input_
;
}
const
RType
*
Input
()
const
{
return
input_
;
}
RType
*
Filter
()
const
{
return
filter_
;
}
RType
*
&
Filter
()
const
{
return
filter_
;
}
RType
*
Output
()
const
{
return
output_
;
}
RType
*
&
Output
()
const
{
return
output_
;
}
const
vector
<
int
>
&
Strides
()
const
{
return
strides_
;
}
const
vector
<
int
>
&
Strides
()
const
{
return
strides_
;
}
...
@@ -389,15 +389,28 @@ class ConvParam : public OpParam {
...
@@ -389,15 +389,28 @@ class ConvParam : public OpParam {
const
vector
<
int
>
&
Dilations
()
const
{
return
dilations_
;
}
const
vector
<
int
>
&
Dilations
()
const
{
return
dilations_
;
}
enum
ExecMode
{
EXEC_INVALID
=
0
,
EXEC_GEMM_FLOAT
,
EXEC_DEPTHWISE3x3S1P1_FLOAT
,
EXEC_DEPTHWISE3x3_FLOAT
,
EXEC_WINOGRAD3X3_FLOAT
,
EXEC_WINOGRAD5X5_FLOAT
,
EXEC_GEMM_INT8
,
};
ExecMode
&
ExecMode
()
const
{
return
exec_mode_
;
}
const
int
&
Groups
()
const
{
return
groups
;
}
const
int
&
Groups
()
const
{
return
groups
;
}
private:
private:
RType
*
input_
;
RType
*
input_
;
RType
*
output_
;
mutable
RType
*
output_
;
RType
*
filter_
;
mutable
RType
*
filter_
;
vector
<
int
>
strides_
;
vector
<
int
>
strides_
;
vector
<
int
>
paddings_
;
vector
<
int
>
paddings_
;
vector
<
int
>
dilations_
;
vector
<
int
>
dilations_
;
mutable
enum
ExecMode
exec_mode_
;
int
groups
;
int
groups
;
};
};
template
<
typename
Dtype
>
template
<
typename
Dtype
>
...
...
test/CMakeLists.txt
浏览文件 @
4d05a8c6
...
@@ -141,7 +141,7 @@ if (NOT FOUND_MATCH)
...
@@ -141,7 +141,7 @@ if (NOT FOUND_MATCH)
target_link_libraries
(
test-googlenet-quali paddle-mobile
)
target_link_libraries
(
test-googlenet-quali paddle-mobile
)
# gen test
# gen test
ADD_EXECUTABLE
(
test-conv-op operators/test_cov_op.cpp test_helper.h test_include.h executor_for_test.h
)
ADD_EXECUTABLE
(
test-conv-op operators/test_co
n
v_op.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-conv-op paddle-mobile
)
target_link_libraries
(
test-conv-op paddle-mobile
)
# gen test
# gen test
...
@@ -220,10 +220,6 @@ if (NOT FOUND_MATCH)
...
@@ -220,10 +220,6 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE
(
test-dequantize-op operators/test_dequantize_op.cpp test_helper.h test_include.h
)
ADD_EXECUTABLE
(
test-dequantize-op operators/test_dequantize_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-dequantize-op paddle-mobile
)
target_link_libraries
(
test-dequantize-op paddle-mobile
)
# test int8 conv op
ADD_EXECUTABLE
(
test-int8-conv-op operators/test_int8_conv_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-int8-conv-op paddle-mobile
)
# gen test log
# gen test log
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
target_link_libraries
(
test-log paddle-mobile
)
target_link_libraries
(
test-log paddle-mobile
)
...
...
test/operators/test_
int8_
conv_op.cpp
→
test/operators/test_conv_op.cpp
浏览文件 @
4d05a8c6
...
@@ -18,7 +18,7 @@ limitations under the License. */
...
@@ -18,7 +18,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
paddle_mobile
{
// Reference convolution f
or checking results:
// Reference convolution f
rom Caffe for checking results.
// accumulate through explicit loops over input, output, and filters.
// accumulate through explicit loops over input, output, and filters.
template
<
typename
Itype
,
typename
Otype
>
template
<
typename
Itype
,
typename
Otype
>
void
conv2d
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
void
conv2d
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
...
@@ -129,7 +129,7 @@ void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
...
@@ -129,7 +129,7 @@ void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
}
}
template
<
typename
Itype
,
typename
Otype
,
int
Kernel
,
int
Pad
,
int
Stride
>
template
<
typename
Itype
,
typename
Otype
,
int
Kernel
,
int
Pad
,
int
Stride
>
int
TestConvOp
()
{
int
TestConvOp
(
int
in_channels
,
int
in_height
,
int
in_width
,
int
out_channels
)
{
int
kernel_h
=
Kernel
;
int
kernel_h
=
Kernel
;
int
kernel_w
=
Kernel
;
int
kernel_w
=
Kernel
;
int
pad_h
=
Pad
;
int
pad_h
=
Pad
;
...
@@ -140,10 +140,10 @@ int TestConvOp() {
...
@@ -140,10 +140,10 @@ int TestConvOp() {
int
dilation_w
=
1
;
int
dilation_w
=
1
;
int
batch_size
=
1
;
int
batch_size
=
1
;
int
input_c
=
3
;
int
input_c
=
in_channels
;
int
input_h
=
100
;
int
input_h
=
in_height
;
int
input_w
=
100
;
int
input_w
=
in_width
;
int
output_c
=
10
;
int
output_c
=
out_channels
;
framework
::
DDim
input_shape
=
framework
::
DDim
input_shape
=
framework
::
make_ddim
({
batch_size
,
input_c
,
input_h
,
input_w
});
framework
::
make_ddim
({
batch_size
,
input_c
,
input_h
,
input_w
});
framework
::
DDim
filter_shape
=
framework
::
DDim
filter_shape
=
...
@@ -158,7 +158,7 @@ int TestConvOp() {
...
@@ -158,7 +158,7 @@ int TestConvOp() {
auto
input_var
=
scope
.
get
()
->
Var
(
"input"
);
auto
input_var
=
scope
.
get
()
->
Var
(
"input"
);
auto
input
=
input_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
auto
input
=
input_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
SetupTensor
<
Itype
>
(
input
,
input_shape
,
-
20
,
2
0
);
SetupTensor
<
Itype
>
(
input
,
input_shape
,
-
20
.0
,
20.
0
);
auto
filter_var
=
scope
.
get
()
->
Var
(
"filter"
);
auto
filter_var
=
scope
.
get
()
->
Var
(
"filter"
);
auto
filter
=
filter_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
auto
filter
=
filter_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
...
@@ -174,8 +174,9 @@ int TestConvOp() {
...
@@ -174,8 +174,9 @@ int TestConvOp() {
auto
*
op
=
new
operators
::
ConvOp
<
CPU
,
float
>
(
"conv2d"
,
inputs
,
outputs
,
attrs
,
auto
*
op
=
new
operators
::
ConvOp
<
CPU
,
float
>
(
"conv2d"
,
inputs
,
outputs
,
attrs
,
scope
);
scope
);
// struct timespec ts_begin, ts_end;
op
->
InferShape
();
op
->
InferShape
();
op
->
Init
();
// struct timespec ts_begin, ts_end;
// warmup
// warmup
// op->Run();
// op->Run();
// clock_gettime(CLOCK_MONOTONIC, &ts_begin);
// clock_gettime(CLOCK_MONOTONIC, &ts_begin);
...
@@ -202,7 +203,8 @@ int TestConvOp() {
...
@@ -202,7 +203,8 @@ int TestConvOp() {
const
Otype
*
output_data
=
output
->
data
<
Otype
>
();
const
Otype
*
output_data
=
output
->
data
<
Otype
>
();
Otype
*
output_cmp_data
=
output_cmp
.
data
<
Otype
>
();
Otype
*
output_cmp_data
=
output_cmp
.
data
<
Otype
>
();
for
(
int
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
for
(
int
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
PADDLE_MOBILE_ENFORCE
(
output_data
[
i
]
==
output_cmp_data
[
i
],
float
gap
=
output_data
[
i
]
-
output_cmp_data
[
i
];
PADDLE_MOBILE_ENFORCE
(
std
::
abs
(
gap
/
output_data
[
i
])
<
1e-3
,
"output[%d] = %d, output_cmp[%d] = %d"
,
i
,
"output[%d] = %d, output_cmp[%d] = %d"
,
i
,
output_data
[
i
],
i
,
output_cmp_data
[
i
]);
output_data
[
i
],
i
,
output_cmp_data
[
i
]);
}
}
...
@@ -212,68 +214,104 @@ int TestConvOp() {
...
@@ -212,68 +214,104 @@ int TestConvOp() {
}
// namespace paddle_mobile
}
// namespace paddle_mobile
int
main
()
{
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
5
)
{
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"Usage:
\n
"
<<
" ./test-int8-conv-op in_channels in_height in_width out_channels
\n
"
<<
" params:
\n
"
<<
" -in_channels: int, input image's channels
\n
"
<<
" -in_height: int, input image's height
\n
"
<<
" -in_width: int, input image's width
\n
"
<<
" -out_channels: int, conv output channels
\n
"
;
return
1
;
}
int
in_channels
=
atoi
(
argv
[
1
]);
int
in_height
=
atoi
(
argv
[
2
]);
int
in_width
=
atoi
(
argv
[
3
]);
int
out_channels
=
atoi
(
argv
[
4
]);
// kernel = 3, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
float
,
float
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 0, stride = 2
// kernel = 7, pad = 0, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=2"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
0
,
2
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
0
,
2
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 1, stride = 2
// kernel = 7, pad = 1, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=2"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
1
,
2
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
1
,
2
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 3, stride = 2
// kernel = 7, pad = 3, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=2"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
2
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
2
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 0, stride = 1
// kernel = 7, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
0
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 1, stride = 1
// kernel = 7, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
1
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 3, stride = 1
// kernel = 7, pad = 3, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 5, stride = 3
// kernel = 7, pad = 5, stride = 3
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=5, stride=3"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=5, stride=3"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
5
,
3
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
5
,
3
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 3, stride = 4
// kernel = 7, pad = 3, stride = 4
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=4"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=4"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
4
>
(
);
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
4
>
(
in_channels
,
in_height
,
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"
\n
"
;
in_width
,
out_channels
)
;
// kernel = 3, pad = 0, stride = 1
// kernel = 3, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=0, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
3
,
0
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
3
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 3, pad = 0, stride = 1
// kernel = 3, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=3, pad=0, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=3, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
float
,
float
,
3
,
0
,
1
>
(
);
paddle_mobile
::
TestConvOp
<
float
,
float
,
3
,
0
,
1
>
(
in_channels
,
in_height
,
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"
\n
"
;
in_width
,
out_channels
)
;
// kernel = 3, pad = 1, stride = 1
// kernel = 3, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=1, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
3
,
1
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 3, pad = 1, stride = 1
// kernel = 3, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=3, pad=1, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
float
,
float
,
3
,
1
,
1
>
(
);
paddle_mobile
::
TestConvOp
<
float
,
float
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"
\n
"
;
in_width
,
out_channels
)
;
// kernel = 5, pad = 0, stride = 1
// kernel = 5, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=5, pad=0, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=5, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
5
,
0
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
5
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 5, pad = 0, stride = 1
// kernel = 5, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=5, pad=0, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=5, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
float
,
float
,
5
,
0
,
1
>
(
);
paddle_mobile
::
TestConvOp
<
float
,
float
,
5
,
0
,
1
>
(
in_channels
,
in_height
,
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"
\n
"
;
in_width
,
out_channels
)
;
// kernel = 5, pad = 2, stride = 1
// kernel = 5, pad = 2, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=5, pad=2, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=5, pad=2, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
5
,
2
,
1
>
();
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
5
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 5, pad = 2, stride = 1
// kernel = 5, pad = 2, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=5, pad=2, stride=1"
;
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, kernel=5, pad=2, stride=1"
;
paddle_mobile
::
TestConvOp
<
float
,
float
,
5
,
2
,
1
>
();
paddle_mobile
::
TestConvOp
<
float
,
float
,
5
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
}
}
test/operators/test_cov_op.cpp
已删除
100644 → 0
浏览文件 @
3076c54f
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/conv_op.h"
int
main
()
{
paddle_mobile
::
Loader
<
paddle_mobile
::
GPU_MALI
>
loader
;
// ../models/image_classification_resnet.inference.model
auto
program
=
loader
.
Load
(
g_googlenet
);
PADDLE_MOBILE_ENFORCE
(
program
.
originProgram
!=
nullptr
,
"program file read fail"
);
Executor4Test
<
paddle_mobile
::
GPU_MALI
,
paddle_mobile
::
operators
::
ConvOp
<
paddle_mobile
::
GPU_MALI
,
float
>>
executor
(
program
,
"conv2d"
);
paddle_mobile
::
framework
::
Tensor
input
;
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
{
1
,
3
,
224
,
224
});
// // use SetupTensor if not has local input image .
// SetupTensor<float>(&input, {1, 3, 224, 224}, static_cast<float>(0),
// static_cast<float>(1));
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
64
,
112
,
112
});
auto
output
=
executor
.
Predict
(
input
,
"data"
,
"conv2d_0.tmp_0"
,
out_ddim
);
auto
output_ptr
=
output
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
20
;
++
j
)
{
DLOG
<<
" value of output: "
<<
output_ptr
[
j
];
}
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录