提交 492d60a5 编写于 作者: R Ray Liu 提交者: GitHub

Merge pull request #1180 from hjchen2/dev-latest

Optimize elementwise/relu/im2col, support 1x1 and 7x7 conv using int8, fix some code style
......@@ -12,14 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstdlib>
#include <cstring>
#include <string>
#include "common/enforce.h"
#include "common/log.h"
#pragma once
namespace paddle_mobile {
template <int ID, typename Type>
struct IDToType {
typedef Type type_t;
......
......@@ -156,7 +156,7 @@ class AttrReader {
template <typename T>
inline T Get(const string &name) const {
PADDLE_MOBILE_ENFORCE(attrs_.count(name) != 0,
"%s should be in AttributeMap", name);
"%s should be in AttributeMap", name.c_str());
return ((Attribute)attrs_.at(name)).Get<T>();
}
......
......@@ -18,9 +18,9 @@ limitations under the License. */
#include <vector>
#include "framework/lod_tensor.h"
#include "framework/mixed_vector.h"
#include "framework/tensor.h"
#include "memory/t_malloc.h"
#include "mixed_vector.h"
namespace paddle_mobile {
namespace framework {
......
......@@ -343,7 +343,9 @@ inline Print &operator<<(Print &printer, const Tensor &tensor) {
} else if (tensor.type() == typeid(int64_t)) {
printer << tensor.data<int64_t>()[i] << " ";
} else if (tensor.type() == typeid(int8_t)) {
printer << static_cast<int32_t>(tensor.data<int8_t>()[i]) << " ";
printer << static_cast<int>(tensor.data<int8_t>()[i]) << " ";
} else if (tensor.type() == typeid(int32_t)) {
printer << tensor.data<int32_t>()[i] << " ";
}
}
#endif
......
......@@ -80,12 +80,13 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
}
template <typename Dtype>
void LoadMemInternal(void **data, framework::LoDTensor *tensor) {
static void LoadMemInternal(void **data, framework::LoDTensor *tensor,
bool quant_uint8 = false) {
char **data_buf = reinterpret_cast<char **>(data);
int64_t size = tensor->numel();
Dtype *tensor_data = tensor->mutable_data<Dtype>();
if (0) {
// TODO(hjchen2) should be moved into operator init function
if (quant_uint8) {
// should be moved into operator init function
float min_value;
float max_value;
memcpy(&min_value, data_buf, sizeof(float));
......@@ -141,7 +142,8 @@ void Executor<Dtype, P>::LoadMemory(
// parse tensor from stream
switch (tensor_desc.DataType()) {
case framework::VARTYPE_TYPE_FP32:
LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor);
LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
program_.quantification);
break;
case framework::VARTYPE_TYPE_INT8:
LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#include "operators/dequantize_op.h"
namespace paddle_mobile {
......@@ -30,3 +32,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(dequantize, ops::DequantizeOp);
#endif
#endif
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#pragma once
#include <string>
......@@ -41,3 +43,5 @@ class DequantizeOp
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -14,7 +14,7 @@ limitations under the License. */
#ifdef ELEMENTWISEMUL_OP
#include "elementwise_mul_op.h"
#include "operators/elementwise_mul_op.h"
namespace paddle_mobile {
namespace operators {
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_MOBILE_CPU
#ifdef DEQUANT_OP
#include "operators/kernel/dequantize_kernel.h"
......@@ -38,7 +38,8 @@ void DequantizeKernel<CPU, float>::Compute(
const int32_t *x = input->data<const int32_t>();
float *y = output->mutable_data<float>();
size_t size = output->numel();
float scale = 1.f / (activation_scale * weight_scale);
// float scale = 1.f / (activation_scale * weight_scale);
float scale = activation_scale / weight_scale;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t loop = size >> 4;
size_t remain = size & 0xF;
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_MOBILE_CPU
#ifdef QUANT_OP
#include "operators/kernel/quantize_kernel.h"
#include <cmath>
......@@ -225,7 +225,7 @@ static void quantize_round_to_nearest(const Tensor *input, const float scale,
const float *x = input->data<const float>();
int8_t *y = output->mutable_data<int8_t>();
size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t loop = size >> 4;
size_t remain = size & 0xF;
for (size_t i = 0; i < loop; ++i) {
......@@ -280,17 +280,18 @@ void QuantizeKernel<CPU, float>::Compute(
}
max_abs = std::max(max_abs, 1e-6f);
// only support int8 currently
float online_scale = 127 / max_abs;
param.online_scale_->mutable_data<float>()[0] = online_scale;
float scale = 127 / max_abs;
param.online_scale_->mutable_data<float>()[0] = max_abs;
switch (param.round_type_) {
case ROUND_NEAREST_TO_EVEN:
quantize_round_to_even(input, online_scale, output);
quantize_round_to_even(input, scale, output);
break;
case ROUND_NEAREST_TOWARDS_ZERO:
quantize_round_to_zero(input, online_scale, output);
quantize_round_to_zero(input, scale, output);
break;
case ROUND_NEAREST_AWAY_ZERO:
quantize_round_to_nearest(input, online_scale, output);
quantize_round_to_nearest(input, scale, output);
break;
default:
LOG(kLOG_ERROR) << "round type is not supported.";
break;
......
......@@ -16,24 +16,27 @@ limitations under the License. */
#pragma once
#include <vector>
#include "operators/math/conv_arm_int8.h"
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype>
inline void ConvBasic(const ConvParam<CPU> &param) {
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor *output = param.Output();
output->mutable_data<float>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
const std::vector<int> strides = param.Strides();
const std::vector<int> paddings = param.Paddings();
const std::vector<int> dilations = param.Dilations();
const int batch_size = static_cast<int>(input->dims()[0]);
......@@ -57,7 +60,7 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col.mutable_data<Dtype>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
......@@ -76,8 +79,8 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
math::Vol2ColFunctor<CPU, Dtype> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Dtype> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
......@@ -96,6 +99,7 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
......@@ -104,29 +108,85 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
math::matmul<Dtype>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
}
}
}
inline void ConvCompute_int8(const ConvParam<CPU> &param) {
typedef void (*ConvFunc)(const Tensor &input, const Tensor &kernel,
Tensor *output);
static ConvFunc conv_funcs_table[7][5] = {
{0, 0, 0, 0, 0}, // k = 1
{0, 0, 0, 0, 0}, {conv3x3s1_int8, 0, 0, 0, 0}, // k = 3
{0, 0, 0, 0, 0}, {conv5x5s1_int8, 0, 0, 0, 0}, // k = 5
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, // k = 7
};
const Tensor *input = param.Input();
Tensor *filter = param.Filter();
Tensor *output = param.Output();
int groups = param.Groups();
const std::vector<int> &strides = param.Strides();
const std::vector<int> &paddings = param.Paddings();
const std::vector<int> &dilations = param.Dilations();
int kernel_h = filter->dims()[2];
int kernel_w = filter->dims()[3];
output->mutable_data<int32_t>();
ConvFunc conv_func = 0;
if (strides[1] == strides[0] && strides[1] < 6 && kernel_h == kernel_w &&
kernel_h < 8 && groups == 1 && dilations[0] == dilations[1] &&
dilations[1] == 1) {
conv_func = conv_funcs_table[kernel_h - 1][strides[0] - 1];
}
if (conv_func) {
int batch_size = input->dims()[0];
math::PadFunctor<CPU, int8_t> pad;
Tensor input_pad;
for (int i = 0; i < batch_size; ++i) {
Tensor in_batch = input->Slice(i, i + 1);
Tensor out_batch = output->Slice(i, i + 1);
if (paddings[0] == 0 && paddings[1] == 0) {
input_pad = in_batch;
} else {
framework::DDim pad_shape = in_batch.dims();
pad_shape[2] += 2 * paddings[0];
pad_shape[3] += 2 * paddings[1];
input_pad.mutable_data<int8_t>(pad_shape);
pad(in_batch, paddings[0], paddings[1], &input_pad);
}
conv_func(input_pad, *filter, &out_batch);
}
} else {
ConvBasic<int8_t>(param);
}
}
template <typename P>
void ConvCompute(const ConvParam<CPU> &param) {
if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
nullptr, false);
} else if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3) {
math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
param.Filter(), nullptr, param.Output(), false);
if (param.Input()->type() == typeid(int8_t)) {
ConvCompute_int8(param);
} else {
ConvBasic(param);
param.Output()->mutable_data<float>();
if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
nullptr, false);
} else if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3) {
math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
param.Filter(), nullptr, param.Output(), false);
} else {
ConvBasic<float>(param);
}
}
}
......
......@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> &param) {
Bias, false);
} else {
ConvBasic(param);
ConvBasic<float>(param);
}
}
......
......@@ -15,8 +15,12 @@ limitations under the License. */
#ifdef ELEMENTWISEADD_OP
#pragma once
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
......@@ -33,8 +37,61 @@ void ElementwiseAddCompute(const ElementwiseAddParam<CPU> &param) {
Tensor *Out = param.Out();
Out->mutable_data<float>();
int axis = param.Axis();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
const auto &x_dims = input_x->dims();
const auto &y_dims = input_y->dims();
/// axis = -1 represent the last dimensions.
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
size_t batch = 1;
size_t channels = 1;
size_t elementwise_num = 1;
for (int i = 0; i < axis; ++i) {
batch *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
channels *= y_dims[i];
}
for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
elementwise_num *= x_dims[i];
}
const float *bias_data = input_y->data<float>();
const float *input_data = input_x->data<float>();
float *output_data = Out->mutable_data<float>();
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels; ++j) {
size_t offset = (i * channels + j) * elementwise_num;
const float *input = input_data + offset;
const float *bias = bias_data + j;
float *output = output_data + offset;
int loop = elementwise_num >> 0x4;
int remain = elementwise_num & 0xF;
for (int k = 0; k < loop; ++k) {
float32x4_t rb = vdupq_n_f32(*bias);
float32x4_t r0 = vld1q_f32(input);
float32x4_t r1 = vld1q_f32(input + 4);
float32x4_t r2 = vld1q_f32(input + 8);
float32x4_t r3 = vld1q_f32(input + 12);
r0 = vaddq_f32(r0, rb);
r1 = vaddq_f32(r1, rb);
r2 = vaddq_f32(r2, rb);
r3 = vaddq_f32(r3, rb);
vst1q_f32(output, r0);
vst1q_f32(output + 4, r1);
vst1q_f32(output + 8, r2);
vst1q_f32(output + 12, r3);
input += 16;
output += 16;
}
for (int k = 0; k < remain; ++k) {
output[k] = input[k] + *bias;
}
}
}
#else
ElementwiseComputeEx<AddFunctor<float>, float>(input_x, input_y, axis,
AddFunctor<float>(), Out);
#endif
}
template class ElementwiseAddKernel<CPU, float>;
......
......@@ -17,6 +17,9 @@ limitations under the License. */
#include <operators/math/transform.h>
#include "operators/op_param.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
......@@ -37,71 +40,100 @@ void ReluCompute(const ReluParam<CPU> &param) {
auto *out_ptr = out->mutable_data<float>();
int numel = input_x->numel();
// if (numel > 64) {
// asm volatile(
// "pld [%[input_x_ptr], #0] \n\t"
// "vmov.f32 q8, #0.0 \n\t"
// "subs %[num], %[num], #32 \n\t"
// "blt end_num_%= \n\t"
// "loop_num_%=: \n\t"
// "pld [%[input_x_ptr], #1024] \n\t"
//
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
//
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
//
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
//
// "subs %[num], %[num], #32 \n\t"
// "bge loop_num_%= \n\t"
// "end_num_%=: \n\t"
// "cmp %[num], #0 \n\t"
// "bge end_%= \n\t"
// "mov r6, #4 \n\t"
// "mul r5, %[num], r6 \n\t"
// "add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
// "add %[out_ptr], %[out_ptr], r5 \n\t"
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
// "end_%=: \n\t"
// :
// :
// [out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num]
// "r"(numel) : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6",
// "q7", "q8", "r5",
// "r6");
// } else {
ReluFunctor<float> func_;
math::Transform trans;
trans(input_x_ptr, input_x_ptr + numel, out_ptr, func_);
// }
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if __aarch64__
if (numel > 0) {
int loop = numel >> 0x4;
int remain = numel & 0xF;
float32x4_t zero = vdupq_n_f32(0.f);
for (int i = 0; i < loop; ++i) {
float32x4_t r0 = vld1q_f32(input_x_ptr);
float32x4_t r1 = vld1q_f32(input_x_ptr + 4);
float32x4_t r2 = vld1q_f32(input_x_ptr + 8);
float32x4_t r3 = vld1q_f32(input_x_ptr + 12);
r0 = vmaxq_f32(r0, zero);
r1 = vmaxq_f32(r1, zero);
r2 = vmaxq_f32(r2, zero);
r3 = vmaxq_f32(r3, zero);
vst1q_f32(out_ptr, r0);
vst1q_f32(out_ptr + 4, r1);
vst1q_f32(out_ptr + 8, r2);
vst1q_f32(out_ptr + 12, r3);
input_x_ptr += 16;
out_ptr += 16;
}
for (int i = 0; i < remain; ++i) {
out_ptr[i] = (input_x_ptr[i] > 0) * input_x_ptr[i];
}
#else
if (numel > 64) {
asm volatile(
"pld [%[input_x_ptr], #0] \n\t"
"vmov.f32 q8, #0.0 \n\t"
"subs %[num], %[num], #32 \n\t"
"blt end_num_%= \n\t"
"loop_num_%=: \n\t"
"pld [%[input_x_ptr], #1024] \n\t"
"vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
"vmax.f32 q0, q0, q8 \n\t"
"vmax.f32 q1, q1, q8 \n\t"
"vmax.f32 q2, q2, q8 \n\t"
"vmax.f32 q3, q3, q8 \n\t"
"vmax.f32 q4, q4, q8 \n\t"
"vmax.f32 q5, q5, q8 \n\t"
"vmax.f32 q6, q6, q8 \n\t"
"vmax.f32 q7, q7, q8 \n\t"
"vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
"vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
"vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
"vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
"subs %[num], %[num], #32 \n\t"
"bge loop_num_%= \n\t"
"end_num_%=: \n\t"
"cmp %[num], #0 \n\t"
"bge end_%= \n\t"
"mov r6, #4 \n\t"
"mul r5, %[num], r6 \n\t"
"add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
"vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
"vmax.f32 q0, q0, q8 \n\t"
"vmax.f32 q1, q1, q8 \n\t"
"vmax.f32 q2, q2, q8 \n\t"
"vmax.f32 q3, q3, q8 \n\t"
"vmax.f32 q4, q4, q8 \n\t"
"vmax.f32 q5, q5, q8 \n\t"
"vmax.f32 q6, q6, q8 \n\t"
"vmax.f32 q7, q7, q8 \n\t"
"add %[out_ptr], %[out_ptr], r5 \n\t"
"vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
"vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
"vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
"vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
"end_%=: \n\t"
:
:
[out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num] "r"(numel)
: "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "r5",
"r6");
#endif
} else {
#endif
ReluFunctor<float> func_;
math::Transform trans;
trans(input_x_ptr, input_x_ptr + numel, out_ptr, func_);
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
}
#endif
}
} // namespace operators
} // namespace paddle_mobile
......
......@@ -15,11 +15,14 @@ limitations under the License. */
#ifdef SUM_OP
#pragma once
#include <vector>
#include "operators/math/selected_rows_functor.h"
namespace paddle_mobile {
namespace operators {
using LoDTensorArray = std::vector<LoDTensor>;
template <typename P>
void SumCompute(const SumParam<CPU> &param) {
auto inputsvars = param.InputsVars();
......@@ -63,31 +66,21 @@ void SumCompute(const SumParam<CPU> &param) {
std::unique_ptr<framework::SelectedRows> in0;
if (in_place) {
// If is in_place, we store the input[0] to in0
auto *in_sel0 = inputsvars[0]->Get<SelectedRows>();
auto *in_sel0 = inputsvars[0]->Get<framework::SelectedRows>();
auto &rows = in_sel0->rows();
//#ifdef PADDLE_WITH_CUDA
// std::vector<int64_t> rows_in_cpu;
// rows_in_cpu.reserve(rows.size());
// for (auto item : rows) {
// rows_in_cpu.push_back(item);
// }
// in0.reset(new framework::SelectedRows(rows_in_cpu,
// in_sel0.height()));
//#else
in0.reset(new framework::SelectedRows(rows, in_sel0->height()));
//#endif
in0->mutable_value()->ShareDataWith(in_sel0->value());
}
auto get_selected_row = [&](size_t i) -> const SelectedRows & {
auto get_selected_row = [&](size_t i) -> const framework::SelectedRows & {
if (i == 0 && in0) {
return *in0.get();
} else {
return *(inputsvars[i]->Get<SelectedRows>());
return *(inputsvars[i]->Get<framework::SelectedRows>());
}
};
auto *out = outvar->GetMutable<SelectedRows>();
auto *out = outvar->GetMutable<framework::SelectedRows>();
out->mutable_rows()->clear();
auto *out_value = out->mutable_value();
......@@ -150,8 +143,6 @@ void SumCompute(const SumParam<CPU> &param) {
}
}
} else {
if (outvar->IsType<framework::Tensor>()) {
}
PADDLE_MOBILE_THROW_EXCEPTION(
"Unexpected branch, output variable type is %s", outvar->Type().name());
}
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#pragma once
#include "framework/operator.h"
......@@ -30,3 +32,5 @@ class DequantizeKernel
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -23,8 +23,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ElementwiseMulKernel
: public framework::OpKernelBase<DeviceType,
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#pragma once
#include "framework/operator.h"
......@@ -30,3 +32,5 @@ class QuantizeKernel
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -21,8 +21,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class SumKernel
: public framework::OpKernelBase<DeviceType, SumParam<DeviceType>> {
......
此差异已折叠。
此差异已折叠。
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
void conv3x3s1_int8(const framework::Tensor& input,
const framework::Tensor& weight, framework::Tensor* output);
void conv3x3s1_int8_4c(const framework::Tensor& input,
const framework::Tensor& weight,
framework::Tensor* output);
void conv5x5s1_int8(const framework::Tensor& input,
const framework::Tensor& weight, framework::Tensor* output);
} // namespace operators
} // namespace paddle_mobile
#endif
此差异已折叠。
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <cmath>
#include <string>
#include "framework/tensor.h"
namespace paddle_mobile {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/pad.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <typename T>
class PadFunctor<CPU, T> {
public:
void operator()(const framework::Tensor &input, const int pad_h,
const int pad_w, framework::Tensor *output) {
const T *in_data = input.data<T>();
T *out_data = output->mutable_data<T>();
const framework::DDim &input_shape = input.dims();
const framework::DDim &output_shape = output->dims();
// fill output with 0
memset(out_data, 0, sizeof(T) * output->numel());
// should make sure the shape of output is match with input
for (int i = 0; i < input_shape[0]; ++i) {
for (int c = 0; c < input_shape[1]; ++c) {
out_data += pad_h * output_shape[3];
for (int h = 0; h < input_shape[2]; ++h) {
memcpy(out_data + pad_w, in_data, sizeof(T) * input_shape[3]);
out_data += output_shape[3];
in_data += input_shape[3];
}
out_data += pad_h * output_shape[3];
}
}
}
};
template class PadFunctor<CPU, float>;
template class PadFunctor<CPU, int8_t>;
} // namespace math
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <typename DeviceType, typename T>
class PadFunctor {
public:
void operator()(const framework::Tensor &input, const int pad_h,
const int pad_w, framework::Tensor *output);
};
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -32,9 +32,6 @@ class Vol2ColFunctor<CPU, T> {
void operator()(const Tensor &vol, const std::vector<int> &dilations,
const std::vector<int> &strides,
const std::vector<int> &paddings, Tensor *col) const {
// PADDLE_ENFORCE(vol.dims().size() == 4);
// PADDLE_ENFORCE(col->dims().size() == 7);
int input_channels = vol.dims()[0];
int input_depth = vol.dims()[1];
int input_height = vol.dims()[2];
......@@ -48,32 +45,6 @@ class Vol2ColFunctor<CPU, T> {
int channels_col =
input_channels * filter_depth * filter_height * filter_width;
// PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
// ((dilations[0] * (filter_depth - 1)
// + 1))) /
// strides[0] +
// 1,
// output_depth,
// "input_depth and output_depth are "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
// ((dilations[1] * (filter_height -
// 1) + 1))) /
// strides[1] +
// 1,
// output_height,
// "input_height and output_height are
// "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
// ((dilations[2] * (filter_width - 1)
// + 1))) /
// strides[2] +
// 1,
// output_width,
// "input_width and output_width are "
// "mismatching.");
const T *vol_data = vol.data<T>();
T *col_data = col->data<T>();
......@@ -119,9 +90,6 @@ class Col2VolFunctor<CPU, T> {
void operator()(const Tensor &col, const std::vector<int> &dilations,
const std::vector<int> &strides,
const std::vector<int> &paddings, Tensor *vol) const {
// PADDLE_ENFORCE(vol->dims().size() == 4);
// PADDLE_ENFORCE(col.dims().size() == 7);
int input_channels = vol->dims()[0];
int input_depth = vol->dims()[1];
int input_height = vol->dims()[2];
......@@ -135,31 +103,6 @@ class Col2VolFunctor<CPU, T> {
int channels_col =
input_channels * filter_depth * filter_height * filter_width;
// PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
// ((dilations[0] * (filter_depth - 1)
// + 1))) /
// strides[0] +
// 1,
// output_depth,
// "input_depth and output_depth are "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
// ((dilations[1] * (filter_height -
// 1) + 1))) /
// strides[1] +
// 1,
// output_height,
// "input_height and output_height are
// "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
// ((dilations[2] * (filter_width - 1)
// + 1))) /
// strides[2] +
// 1,
// output_width,
// "input_width and output_width are "
// "mismatching.");
T *vol_data = vol->data<T>();
const T *col_data = col.data<T>();
......@@ -195,9 +138,9 @@ class Col2VolFunctor<CPU, T> {
};
template class Vol2ColFunctor<CPU, float>;
template class Vol2ColFunctor<CPU, double>;
template class Vol2ColFunctor<CPU, int8_t>;
template class Col2VolFunctor<CPU, float>;
template class Col2VolFunctor<CPU, double>;
template class Col2VolFunctor<CPU, int8_t>;
} // namespace math
} // namespace operators
......
......@@ -2294,6 +2294,7 @@ class ShapeParam : public OpParam {
};
#endif
#ifdef QUANT_OP
template <typename Dtype>
class QuantizeParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
......@@ -2304,14 +2305,12 @@ class QuantizeParam : public OpParam {
const AttributeMap &attrs, const Scope &scope) {
input_ = InputXFrom<GType>(inputs, scope);
out_ = OutFrom<GType>(outputs, scope);
if (HasAttr("is_static", attrs)) {
is_static_ = GetAttr<bool>("is_static", attrs);
}
// online
// scale = max(abs(x))
online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
// offline
if (HasAttr("static_scale", attrs)) {
is_static_ = true;
static_scale_ = GetAttr<float>("static_scale", attrs);
}
// x = round(scale * x)
......@@ -2333,9 +2332,11 @@ class QuantizeParam : public OpParam {
float static_scale_ = 1.0f;
// round method type
// nearest_zero and nearest_even is valid currently
RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
};
#endif
#ifdef DEQUANT_OP
template <typename Dtype>
class DequantizeParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
......@@ -2363,6 +2364,7 @@ class DequantizeParam : public OpParam {
RType *activation_scale_;
float weight_scale_;
};
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#include "operators/quantize_op.h"
#include <vector>
......@@ -33,3 +35,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(quantize, ops::QuantizeOp);
#endif
#endif
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#pragma once
#include <string>
......@@ -40,3 +42,5 @@ class QuantizeOp : public framework::OperatorWithKernel<
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -26,7 +26,7 @@ void SumOp<Dtype, T>::InferShape() const {
auto inputs = this->param_.Inputs();
const size_t n = inputs.size();
std::vector<DDim> inputs_dims;
std::vector<framework::DDim> inputs_dims;
inputs_dims.reserve(n);
for (int i = 0; i < n; i++) {
inputs_dims.push_back(inputs[i]->dims());
......
......@@ -209,6 +209,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-dequantize-op operators/test_dequantize_op.cpp test_helper.h test_include.h)
target_link_libraries(test-dequantize-op paddle-mobile)
# test int8 conv op
ADD_EXECUTABLE(test-int8-conv-op operators/test_int8_conv_op.cpp test_helper.h test_include.h)
target_link_libraries(test-int8-conv-op paddle-mobile)
# gen test log
ADD_EXECUTABLE(test-log common/test_log.cpp)
target_link_libraries(test-log paddle-mobile)
......
......@@ -25,27 +25,31 @@ int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
#endif
paddle_mobile.SetThreadNum(4);
bool optimize = true;
paddle_mobile.SetThreadNum(1);
bool optimize = false;
auto time1 = time();
if (paddle_mobile.Load(g_googlenet, optimize)) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time2) << "ms" << std::endl;
std::vector<float> input;
std::vector<float> output;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
// 预热十次
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
// // 预热十次
// for (int i = 0; i < 10; ++i) {
// output = paddle_mobile.Predict(input, dims);
// }
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
output = paddle_mobile.Predict(input, dims);
}
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
for (int i = 0; i < output.size(); ++i) {
DLOG << "result[" << i << "] = " << output[i];
}
}
return 0;
}
......@@ -59,7 +59,7 @@ int TestDequqntizeOp() {
framework::Tensor output_cmp;
output_cmp.Resize(dim);
float dequant_scale = 1.f / (1.27 * 1.74);
float dequant_scale = 1.27 / 1.74;
dequantize(input, dequant_scale, &output_cmp);
const float* output_cmp_data = output_cmp.data<float>();
for (int i = 0; i < output->numel(); ++i) {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/conv_op.h"
namespace paddle_mobile {
// Reference convolution for checking results:
// accumulate through explicit loops over input, output, and filters.
template <typename Itype, typename Otype>
void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
const framework::AttributeMap &attrs, framework::Tensor *output) {
framework::AttrReader attr_reader(attrs);
std::vector<int> paddings = attr_reader.Get<std::vector<int>>("paddings");
std::vector<int> strides = attr_reader.Get<std::vector<int>>("strides");
std::vector<int> dilations = attr_reader.Get<std::vector<int>>("dilations");
int groups = attr_reader.Get<int>("groups");
int kernel_h = filter->dims()[2];
int kernel_w = filter->dims()[3];
int pad_h = paddings[0];
int pad_w = paddings[1];
int stride_h = strides[0];
int stride_w = strides[1];
int dilation_h = dilations[0];
int dilation_w = dilations[1];
auto in_shape = input->dims();
auto out_shape = output->dims();
const bool has_depth = 0;
int kernel_d, pad_d, stride_d, dilation_d;
if (has_depth) {
kernel_d = kernel_h;
stride_d = stride_h;
pad_d = pad_h;
dilation_d = dilation_h;
} else {
kernel_d = stride_d = dilation_d = 1;
pad_d = 0;
}
// Groups
int o_g = out_shape[1] / groups;
int k_g = in_shape[1] / groups;
int o_head, k_head;
// Convolution
vector<int> weight_offset(4 + has_depth);
vector<int> in_offset(4 + has_depth);
vector<int> out_offset(4 + has_depth);
auto offset = [](const framework::Tensor *input, const vector<int> &indics) {
framework::DDim shape = input->dims();
size_t count = 0;
for (int i = 0; i < indics.size(); ++i) {
count *= shape[i];
count += indics[i];
}
return count;
};
const Itype *in_data = input->data<Itype>();
const Itype *w_data = filter->data<Itype>();
Otype *out_data = output->mutable_data<Otype>();
memset(out_data, 0, output->numel() * sizeof(Otype));
for (int n = 0; n < out_shape[0]; n++) {
for (int g = 0; g < groups; g++) {
o_head = o_g * g;
k_head = k_g * g;
for (int o = 0; o < o_g; o++) {
for (int k = 0; k < k_g; k++) {
for (int z = 0; z < (has_depth ? out_shape[2] : 1); z++) {
for (int y = 0; y < out_shape[2 + has_depth]; y++) {
for (int x = 0; x < out_shape[3 + has_depth]; x++) {
for (int r = 0; r < kernel_d; r++) {
for (int p = 0; p < kernel_h; p++) {
for (int q = 0; q < kernel_w; q++) {
int in_z = z * stride_d - pad_d + r * dilation_d;
int in_y = y * stride_h - pad_h + p * dilation_h;
int in_x = x * stride_w - pad_w + q * dilation_w;
if (in_z >= 0 && in_z < (has_depth ? in_shape[2] : 1) &&
in_y >= 0 && in_y < in_shape[2 + has_depth] &&
in_x >= 0 && in_x < in_shape[3 + has_depth]) {
weight_offset[0] = o + o_head;
weight_offset[1] = k;
if (has_depth) {
weight_offset[2] = r;
}
weight_offset[2 + has_depth] = p;
weight_offset[3 + has_depth] = q;
in_offset[0] = n;
in_offset[1] = k + k_head;
if (has_depth) {
in_offset[2] = in_z;
}
in_offset[2 + has_depth] = in_y;
in_offset[3 + has_depth] = in_x;
out_offset[0] = n;
out_offset[1] = o + o_head;
if (has_depth) {
out_offset[2] = z;
}
out_offset[2 + has_depth] = y;
out_offset[3 + has_depth] = x;
out_data[offset(output, out_offset)] +=
in_data[offset(input, in_offset)] *
w_data[offset(filter, weight_offset)];
}
}
}
}
}
}
}
}
}
}
}
}
template <typename Itype, typename Otype, int Kernel, int Pad, int Stride>
int TestConvOp() {
int kernel_h = Kernel;
int kernel_w = Kernel;
int pad_h = Pad;
int pad_w = Pad;
int stride_h = Stride;
int stride_w = Stride;
int dilation_h = 1;
int dilation_w = 1;
int batch_size = 1;
int input_c = 3;
int input_h = 100;
int input_w = 100;
int output_c = 10;
framework::DDim input_shape =
framework::make_ddim({batch_size, input_c, input_h, input_w});
framework::DDim filter_shape =
framework::make_ddim({output_c, input_c, kernel_h, kernel_w});
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["Input"] = std::vector<std::string>({"input"});
inputs["Filter"] = std::vector<std::string>({"filter"});
outputs["Output"] = std::vector<std::string>({"output"});
auto input_var = scope.get()->Var("input");
auto input = input_var->template GetMutable<framework::LoDTensor>();
SetupTensor<Itype>(input, input_shape, -20, 20);
auto filter_var = scope.get()->Var("filter");
auto filter = filter_var->template GetMutable<framework::LoDTensor>();
SetupTensor<Itype>(filter, filter_shape, -20, 20);
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
attrs["dilations"].Set<vector<int>>(
std::vector<int>({dilation_h, dilation_w}));
attrs["groups"].Set<int>(1);
auto *op = new operators::ConvOp<CPU, float>("conv2d", inputs, outputs, attrs,
scope);
// struct timespec ts_begin, ts_end;
op->InferShape();
// warmup
// op->Run();
// clock_gettime(CLOCK_MONOTONIC, &ts_begin);
// for (int i = 0; i < 10; ++i) {
op->Run();
// }
// clock_gettime(CLOCK_MONOTONIC, &ts_end);
// uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
// (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
// LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";
int kernel_extent_h = dilation_h * (kernel_h - 1) + 1;
int kernel_extent_w = dilation_w * (kernel_w - 1) + 1;
int output_h = (input_h + 2 * pad_h - kernel_extent_h) / stride_h + 1;
int output_w = (input_w + 2 * pad_w - kernel_extent_w) / stride_w + 1;
auto output_shape = framework::make_ddim(
std::vector<int>({batch_size, output_c, output_h, output_w}));
framework::Tensor output_cmp;
output_cmp.mutable_data<Otype>(output_shape);
conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);
// compare results
auto output = output_var->template Get<framework::LoDTensor>();
const Otype *output_data = output->data<Otype>();
Otype *output_cmp_data = output_cmp.data<Otype>();
for (int i = 0; i < output->numel(); ++i) {
PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
"output[%d] = %d, output_cmp[%d] = %d", i,
output_data[i], i, output_cmp_data[i]);
}
delete op;
return 0;
}
} // namespace paddle_mobile
int main() {
// kernel = 7, pad = 0, stride = 2
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=2";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 2>();
// kernel = 7, pad = 1, stride = 2
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=2";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 2>();
// kernel = 7, pad = 3, stride = 2
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=2";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 2>();
// kernel = 7, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 1>();
// kernel = 7, pad = 1, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 1>();
// kernel = 7, pad = 3, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 1>();
// kernel = 7, pad = 5, stride = 3
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=5, stride=3";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 5, 3>();
// kernel = 7, pad = 3, stride = 4
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=4";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 4>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 3, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>();
// kernel = 3, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
paddle_mobile::TestConvOp<float, float, 3, 0, 1>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 3, pad = 1, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=1, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 1>();
// kernel = 3, pad = 1, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
paddle_mobile::TestConvOp<float, float, 3, 1, 1>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 5, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 5, 0, 1>();
// kernel = 5, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=0, stride=1";
paddle_mobile::TestConvOp<float, float, 5, 0, 1>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 5, pad = 2, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=2, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 5, 2, 1>();
// kernel = 5, pad = 2, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=2, stride=1";
paddle_mobile::TestConvOp<float, float, 5, 2, 1>();
}
......@@ -18,14 +18,6 @@ limitations under the License. */
namespace paddle_mobile {
// static float g_test_data[50] = {
// -5.55, -5.5, -5.45, -5.0, -4.55, -4.5, -4.45, -4.0, -3.55, -3.5,
// -3.45, -3.01, -2.75, -2.5, -2.501, -2.49, -2.01, -1.75, -1.5, -1.25,
// -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25,
// 1.5, 1.75, 2.01, 2.49, 2.501, 2.5, 2.75, 3.01, 3.45, 3.5,
// 3.55, 4.0, 4.45, 4.5, 4.55, 5.0, 5.45, 5.5, 5.55, 6.0,
// };
static float find_abs_max(const Tensor *input) {
float max_abs = 0.f;
const float *x = input->data<const float>();
......@@ -60,6 +52,16 @@ static void quantize_round_to_even(const Tensor *input, const float scale,
}
}
static void quantize_round_to_nearest(const Tensor *input, const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->mutable_data<int8_t>();
size_t size = input->numel();
for (size_t i = 0; i < size; ++i) {
y[i] = round(x[i] * scale);
}
}
int TestQuqntizeOp() {
framework::DDim dim = framework::make_ddim({1, 3, 224, 224});
......@@ -88,15 +90,16 @@ int TestQuqntizeOp() {
auto output_scale = output_scale_var->template Get<framework::LoDTensor>();
const float *output_scale_data = output_scale->data<float>();
float max_abs = find_abs_max(input);
float output_scale_cmp = 127 / max_abs;
float output_scale_cmp = find_abs_max(input);
PADDLE_MOBILE_ENFORCE(output_scale_cmp == output_scale_data[0],
"output_scale = %.6f, output_scale_cmp = %.6f",
output_scale_cmp, output_scale_data[0]);
framework::Tensor output_cmp;
output_cmp.Resize(dim);
quantize_round_to_even(input, output_scale_cmp, &output_cmp);
float scale = 127 / output_scale_cmp;
// quantize_round_to_even(input, scale, &output_cmp);
quantize_round_to_nearest(input, scale, &output_cmp);
int8_t *output_cmp_data = output_cmp.data<int8_t>();
for (int i = 0; i < output->numel(); ++i) {
PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
......
......@@ -223,6 +223,8 @@ if(NOT FOUND_MATCH)
set(SHAPE_OP ON)
set(ELEMENTWISEMUL_OP ON)
set(SUM_OP ON)
set(QUANT_OP ON)
set(DEQUANT_OP ON)
endif()
# option(BATCHNORM_OP "" ON)
......@@ -406,3 +408,10 @@ if (SUM_OP)
add_definitions(-DSUM_OP)
endif()
if (QUANT_OP)
add_definitions(-DQUANT_OP)
endif()
if (DEQUANT_OP)
add_definitions(-DDEQUANT_OP)
endif()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册