Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
459848c4
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
459848c4
编写于
10月 16, 2019
作者:
L
liu zhengxi
提交者:
GitHub
10月 16, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable conv2d op and its unit tests, test=develop (#2200)
enable conv2d op and its unit tests on x86 device
上级
b963383a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
44 addition
and
39 deletion
+44
-39
lite/kernels/x86/CMakeLists.txt
lite/kernels/x86/CMakeLists.txt
+4
-0
lite/kernels/x86/conv_compute.h
lite/kernels/x86/conv_compute.h
+33
-37
lite/kernels/x86/conv_compute_test.cc
lite/kernels/x86/conv_compute_test.cc
+7
-2
未找到文件。
lite/kernels/x86/CMakeLists.txt
浏览文件 @
459848c4
...
@@ -10,6 +10,9 @@ add_kernel(slice_compute_x86 X86 basic SRCS slice_compute.cc DEPS ${lite_kernel_
...
@@ -10,6 +10,9 @@ add_kernel(slice_compute_x86 X86 basic SRCS slice_compute.cc DEPS ${lite_kernel_
add_kernel
(
squeeze_compute_x86 X86 basic SRCS squeeze_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
squeeze_compute_x86 X86 basic SRCS squeeze_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
fill_constant_batch_size_like_compute_x86 X86 basic SRCS fill_constant_batch_size_like_compute.cc DEPS
${
lite_kernel_deps
}
math_function
)
add_kernel
(
fill_constant_batch_size_like_compute_x86 X86 basic SRCS fill_constant_batch_size_like_compute.cc DEPS
${
lite_kernel_deps
}
math_function
)
add_kernel
(
reshape_compute_x86 X86 basic SRCS reshape_compute.cc DEPS
${
lite_kernel_deps
}
reshape_op
)
add_kernel
(
reshape_compute_x86 X86 basic SRCS reshape_compute.cc DEPS
${
lite_kernel_deps
}
reshape_op
)
add_kernel
(
conv_compute_x86 X86 basic SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
blas im2col vol2col
)
# lite_cc_library(elementwise_compute_x86 SRCS elementwise_compute.cc DEPS ${lite_kernel_deps} elementwise_sub_op elementwise_add_op)
# lite_cc_library(softmax_compute_x86 SRCS softmax_compute.cc DEPS ${lite_kernel_deps} softmax)
# lite_cc_library(dropout_compute_x86 SRCS dropout_compute.cc DEPS ${lite_kernel_deps} )
# lite_cc_library(dropout_compute_x86 SRCS dropout_compute.cc DEPS ${lite_kernel_deps} )
# lite_cc_library(conv_compute_x86 SRCS conv_compute.cc DEPS ${lite_kernel_deps} blas im2col vol2col)
# lite_cc_library(conv_compute_x86 SRCS conv_compute.cc DEPS ${lite_kernel_deps} blas im2col vol2col)
# lite_cc_library(pool_compute_x86 SRCS pool_compute.cc DEPS ${lite_kernel_deps} pooling)
# lite_cc_library(pool_compute_x86 SRCS pool_compute.cc DEPS ${lite_kernel_deps} pooling)
...
@@ -37,6 +40,7 @@ if(NOT LITE_WITH_X86)
...
@@ -37,6 +40,7 @@ if(NOT LITE_WITH_X86)
endif
()
endif
()
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
lite_cc_test
(
test_slice_compute_x86 SRCS slice_compute_test.cc DEPS slice_compute_x86
)
lite_cc_test
(
test_slice_compute_x86 SRCS slice_compute_test.cc DEPS slice_compute_x86
)
lite_cc_test
(
test_squeeze_compute_x86 SRCS squeeze_compute_test.cc DEPS squeeze_compute_x86
)
lite_cc_test
(
test_squeeze_compute_x86 SRCS squeeze_compute_test.cc DEPS squeeze_compute_x86
)
...
...
lite/kernels/x86/conv_compute.h
浏览文件 @
459848c4
...
@@ -16,15 +16,14 @@
...
@@ -16,15 +16,14 @@
#include <Eigen/Core>
#include <Eigen/Core>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "lite/backends/x86/math/blas.h"
#include "lite/backends/x86/math/im2col.h"
#include "lite/backends/x86/math/vol2col.h"
#include "lite/core/kernel.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/op_registry.h"
#include "lite/core/types.h"
#include "lite/core/types.h"
#include "lite/fluid/eigen.h"
#include "lite/operators/conv_op.h"
#include "lite/operators/conv_op.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
...
@@ -50,15 +49,14 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -50,15 +49,14 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
public:
using
param_t
=
operators
::
ConvParam
;
using
param_t
=
operators
::
ConvParam
;
void
Run
()
override
{
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ConvParam
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ConvParam
>
();
lite
::
Tensor
filter
=
*
param
.
filter
;
lite
::
Tensor
filter
=
*
param
.
filter
;
param
.
output
->
template
mutable_data
<
T
>();
param
.
output
->
mutable_data
<
T
>
();
const
int
batch_size
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
filter
.
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
filter_shape_vec
(
filter
.
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
output_shape_vec
(
param
.
output
->
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
output_shape_vec
(
param
.
output
->
dims
().
Vectorize
());
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
param
.
x
->
dims
()[
1
]
/
param
.
groups
;
col_shape_vec
[
0
]
=
param
.
x
->
dims
()[
1
]
/
param
.
groups
;
...
@@ -70,7 +68,6 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -70,7 +68,6 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
lite
::
DDim
col_matrix_shape
=
col_shape
.
Flatten2D
(
data_dim
+
1
);
lite
::
DDim
col_matrix_shape
=
col_shape
.
Flatten2D
(
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
param
.
strides
,
param
.
paddings
,
param
.
dilations
);
filter_shape_vec
,
param
.
strides
,
param
.
paddings
,
param
.
dilations
);
lite
::
Tensor
col
;
lite
::
Tensor
col
;
lite
::
Tensor
col_matrix
;
lite
::
Tensor
col_matrix
;
if
(
is_expand
)
{
if
(
is_expand
)
{
...
@@ -80,40 +77,37 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -80,40 +77,37 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
}
lite
::
DDim
input_shape
=
param
.
x
->
dims
().
Slice
(
1
,
param
.
x
->
dims
().
size
());
lite
::
DDim
input_shape
=
param
.
x
->
dims
().
Slice
(
1
,
param
.
x
->
dims
().
size
());
lite
::
DDim
filter_matrix_shape
(
std
::
vector
<
int64_t
>
{
lite
::
DDim
filter_matrix_shape
(
std
::
vector
<
int64_t
>
{
filter
.
dims
()[
0
],
filter
.
dims
().
production
()
/
filter
.
dims
()[
0
]});
filter
.
dims
()[
0
],
filter
.
dims
().
production
()
/
filter
.
dims
()[
0
]});
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
lite
::
DDim
output_matrix_shape
(
std
::
vector
<
int64_t
>
{
lite
::
DDim
output_matrix_shape
(
std
::
vector
<
int64_t
>
{
param
.
output
->
dims
()[
1
],
param
.
output
->
dims
()[
1
],
param
.
output
->
dims
().
production
()
/
param
.
output
->
dims
().
production
()
/
(
param
.
output
->
dims
()[
0
]
*
param
.
output
->
dims
()[
1
])});
(
param
.
output
->
dims
()[
0
]
*
param
.
output
->
dims
()[
1
])});
int
in_step
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
1
])
/
param
.
groups
;
int
in_step
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
1
])
/
param
.
groups
;
int
out_step
=
static_cast
<
int
>
(
param
.
output
->
dims
()[
1
])
/
param
.
groups
;
int
out_step
=
static_cast
<
int
>
(
param
.
output
->
dims
()[
1
])
/
param
.
groups
;
paddle
::
lite
::
x86
::
math
::
Vol2ColFunctor
<
lite
::
TargetType
::
kX86
,
T
>
vol2col
;
paddle
::
operators
::
math
::
Vol2ColFunctor
<
platform
::
CPUDeviceContext
,
T
>
paddle
::
lite
::
x86
::
math
::
Im2ColFunctor
<
vol2col
;
paddle
::
lite
::
x86
::
math
::
ColFormat
::
kCFO
,
paddle
::
operators
::
math
::
Im2ColFunctor
<
lite
::
TargetType
::
kX86
,
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
platform
::
CPUDeviceContext
,
T
>
T
>
im2col
;
im2col
;
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
auto
blas
=
p
latform
::
CPUDeviceContext
()
);
p
addle
::
lite
::
x86
::
math
::
GetBlas
<
lite
::
TargetType
::
kX86
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
lite
::
Tensor
in_batch
;
lite
::
Tensor
in_batch
;
in_batch
.
ShareDataWith
(
lite
::
Tensor
tmp_in_batch
=
param
.
x
->
Slice
<
T
>
(
i
,
i
+
1
);
param
.
x
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
tmp_in_batch
.
Resize
(
input_shape
);
in_batch
.
ShareDataWith
(
tmp_in_batch
);
lite
::
Tensor
out_batch
;
lite
::
Tensor
out_batch
;
out_batch
.
ShareDataWith
(
param
.
output
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
lite
::
Tensor
tmp_out_batch
=
param
.
output
->
Slice
<
T
>
(
i
,
i
+
1
);
output_matrix_shape
.
data
())
);
tmp_out_batch
.
Resize
(
output_matrix_shape
);
out_batch
.
ShareDataWith
(
tmp_out_batch
);
for
(
int
g
=
0
;
g
<
param
.
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
param
.
groups
;
g
++
)
{
lite
::
Tensor
in_slice
;
lite
::
Tensor
in_slice
;
in_slice
.
ShareDataWith
(
in_slice
.
ShareDataWith
(
in_batch
.
raw_tensor
().
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
));
in_batch
.
Slice
<
T
>
(
static_cast
<
int64_t
>
(
g
*
in_step
),
static_cast
<
int64_t
>
((
g
+
1
)
*
in_step
)));
if
(
!
is_expand
)
{
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col
.
ShareDataWith
(
in_slice
);
...
@@ -121,38 +115,40 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -121,38 +115,40 @@ class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
}
else
if
(
data_dim
==
2U
)
{
// im2col
// im2col
im2col
(
platform
::
CPUDeviceContext
()
,
im2col
(
context
,
in_slice
.
raw_tensor
()
,
in_slice
,
param
.
dilations
,
param
.
dilations
,
param
.
strides
,
param
.
strides
,
std
::
vector
<
int
>
{
param
.
paddings
[
0
],
std
::
vector
<
int
>
{
param
.
paddings
[
0
],
param
.
paddings
[
1
],
param
.
paddings
[
1
],
param
.
paddings
[
0
],
param
.
paddings
[
0
],
param
.
paddings
[
1
]},
param
.
paddings
[
1
]},
&
(
col
.
raw_tensor
()
));
&
(
col
));
}
else
if
(
data_dim
==
3U
)
{
}
else
if
(
data_dim
==
3U
)
{
// vol2col
// vol2col
vol2col
(
platform
::
CPUDeviceContext
()
,
vol2col
(
context
,
in_slice
.
raw_tensor
()
,
in_slice
,
param
.
dilations
,
param
.
dilations
,
param
.
strides
,
param
.
strides
,
param
.
paddings
,
param
.
paddings
,
&
(
col
.
raw_tensor
()
));
&
(
col
));
}
}
// gemm
// gemm
lite
::
Tensor
out_slice
;
lite
::
Tensor
out_slice
;
out_slice
.
ShareDataWith
(
out_slice
.
ShareDataWith
(
out_batch
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
out_batch
.
Slice
<
T
>
(
static_cast
<
int64_t
>
(
g
*
out_step
),
static_cast
<
int64_t
>
((
g
+
1
)
*
out_step
)));
lite
::
Tensor
filter_slice
;
lite
::
Tensor
filter_slice
;
filter_slice
.
ShareDataWith
(
filter_slice
.
ShareDataWith
(
filter
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
filter
.
Slice
<
T
>
(
static_cast
<
int64_t
>
(
g
*
out_step
),
blas
.
MatMul
(
filter_slice
.
raw_tensor
(),
static_cast
<
int64_t
>
((
g
+
1
)
*
out_step
)));
blas
.
MatMul
(
filter_slice
,
false
,
false
,
col_matrix
.
raw_tensor
()
,
col_matrix
,
false
,
false
,
T
(
1.0
),
T
(
1.0
),
&
(
out_slice
.
raw_tensor
()
),
&
(
out_slice
),
T
(
0.0
));
T
(
0.0
));
}
}
}
}
...
...
lite/kernels/x86/conv_compute_test.cc
浏览文件 @
459848c4
...
@@ -14,6 +14,8 @@
...
@@ -14,6 +14,8 @@
#include "lite/kernels/x86/conv_compute.h"
#include "lite/kernels/x86/conv_compute.h"
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/op_registry.h"
...
@@ -38,7 +40,7 @@ TEST(conv2d_x86, init) {
...
@@ -38,7 +40,7 @@ TEST(conv2d_x86, init) {
TEST
(
conv2d_x86
,
run_test
)
{
TEST
(
conv2d_x86
,
run_test
)
{
lite
::
Tensor
x
,
filter
,
b
,
out
;
lite
::
Tensor
x
,
filter
,
b
,
out
;
const
expr
int
batch_size
=
1
;
const
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
3
,
3
};
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
3
,
3
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
filter_shape
{
1
,
3
,
3
,
3
};
std
::
vector
<
int64_t
>
filter_shape
{
1
,
3
,
3
,
3
};
...
@@ -74,7 +76,10 @@ TEST(conv2d_x86, run_test) {
...
@@ -74,7 +76,10 @@ TEST(conv2d_x86, run_test) {
param
.
paddings
=
{
0
,
0
};
param
.
paddings
=
{
0
,
0
};
param
.
groups
=
1
;
param
.
groups
=
1
;
param
.
dilations
=
{
1
,
1
};
param
.
dilations
=
{
1
,
1
};
LOG
(
INFO
)
<<
123
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
X86Context
>
();
conv2d
.
SetContext
(
std
::
move
(
ctx
));
conv2d
.
SetParam
(
param
);
conv2d
.
SetParam
(
param
);
conv2d
.
Run
();
conv2d
.
Run
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录