Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4433379d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4433379d
编写于
4月 16, 2020
作者:
Z
zhupengyang
提交者:
GitHub
4月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move logical_compute to host and add ut (#3424)
上级
2066f722
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
253 addition
and
77 deletion
+253
-77
lite/core/op_registry.h
lite/core/op_registry.h
+6
-3
lite/kernels/arm/CMakeLists.txt
lite/kernels/arm/CMakeLists.txt
+0
-1
lite/kernels/host/CMakeLists.txt
lite/kernels/host/CMakeLists.txt
+1
-0
lite/kernels/host/logical_compute.cc
lite/kernels/host/logical_compute.cc
+149
-0
lite/kernels/host/logical_compute.h
lite/kernels/host/logical_compute.h
+10
-18
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-1
lite/tests/kernels/logical_compute_test.cc
lite/tests/kernels/logical_compute_test.cc
+86
-54
未找到文件。
lite/core/op_registry.h
浏览文件 @
4433379d
...
...
@@ -111,18 +111,23 @@ class KernelRegistry final {
KernelRegistryForTarget
<
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kCUDA
),
PRECISION
(
kAny
),
DATALAYOUT
(
kAny
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kCUDA
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kCUDA
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNHWC
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kX86
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kX86
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kHost
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)
>
*
,
//
...
...
@@ -141,9 +146,7 @@ class KernelRegistry final {
KernelRegistryForTarget
<
TARGET
(
kHost
),
PRECISION
(
kInt64
),
DATALAYOUT
(
kNCHW
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kCUDA
),
PRECISION
(
kAny
),
DATALAYOUT
(
kAny
)
>
*
,
//
KernelRegistryForTarget
<
TARGET
(
kARM
),
PRECISION
(
kAny
),
DATALAYOUT
(
kAny
)
>
*
,
//
...
...
lite/kernels/arm/CMakeLists.txt
浏览文件 @
4433379d
...
...
@@ -88,7 +88,6 @@ add_kernel(gru_compute_arm ARM extra SRCS gru_compute.cc DEPS ${lite_kernel_deps
add_kernel
(
beam_search_decode_compute_arm ARM extra SRCS beam_search_decode_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
lookup_table_compute_arm ARM extra SRCS lookup_table_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
lookup_table_dequant_compute_arm ARM extra SRCS lookup_table_dequant_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
logical_compute_arm ARM extra SRCS logical_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
sequence_softmax_compute_arm ARM extra SRCS sequence_softmax_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
while_compute_arm ARM extra SRCS while_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
add_kernel
(
topk_compute_arm ARM extra SRCS topk_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
...
...
lite/kernels/host/CMakeLists.txt
浏览文件 @
4433379d
...
...
@@ -8,4 +8,5 @@ add_kernel(shape_compute_host Host extra SRCS shape_compute.cc DEPS ${lite_kerne
add_kernel
(
is_empty_compute_host Host extra SRCS is_empty_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
crf_decoding_compute_host Host extra SRCS crf_decoding_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
compare_compute_host Host extra SRCS compare_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
logical_compute_host Host extra SRCS logical_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
ctc_align_compute_host Host extra SRCS ctc_align_compute.cc DEPS
${
lite_kernel_deps
}
)
lite/kernels/
arm
/logical_compute.cc
→
lite/kernels/
host
/logical_compute.cc
浏览文件 @
4433379d
...
...
@@ -12,44 +12,34 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/arm/logical_compute.h"
#include <vector>
#include "lite/api/paddle_place.h"
#include "lite/backends/arm/math/funcs.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/kernels/host/logical_compute.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
namespace
host
{
#define LOGICAL_FUNCTOR(name, op) \
template <typename T> \
struct _##name##Functor { \
inline bool operator()(const T& a, const T& b) const { return a op b; } \
#define LOGICAL_FUNCTOR(name, op) \
struct _##name##Functor { \
inline bool operator()(const bool& a, const bool& b) const { \
return a op b; \
} \
};
LOGICAL_FUNCTOR
(
LogicalAnd
,
&&
);
LOGICAL_FUNCTOR
(
LogicalOr
,
||
);
template
<
typename
T
>
struct
_LogicalXorFunctor
{
inline
bool
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
bool
operator
()(
const
bool
&
a
,
const
bool
&
b
)
const
{
return
(
a
||
b
)
&&
!
(
a
&&
b
);
}
};
template
<
typename
T
>
struct
_LogicalNotFunctor
{
inline
bool
operator
()(
const
T
&
a
)
const
{
return
!
a
;
}
inline
bool
operator
()(
const
bool
&
a
)
const
{
return
!
a
;
}
};
// template<typename Functor>
template
<
template
<
typename
T
>
class
Functor
>
void
BinaryLogicalCompute
<
Functor
>::
PrepareForRun
()
{}
template
<
template
<
typename
T
>
class
Functor
>
template
<
class
Functor
>
// template<typename Functor>
void
BinaryLogicalCompute
<
Functor
>::
Run
()
{
auto
&
param
=
this
->
Param
<
operators
::
LogicalParam
>
();
...
...
@@ -57,72 +47,103 @@ void BinaryLogicalCompute<Functor>::Run() {
bool
*
z
=
param
.
Out
->
template
mutable_data
<
bool
>();
const
bool
*
x
=
param
.
X
->
template
data
<
bool
>();
const
bool
*
y
=
param
.
Y
->
template
data
<
bool
>();
using
LogicalFunctor
=
Functor
<
bool
>
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
z
[
i
]
=
Logical
Functor
()(
x
[
i
],
y
[
i
]);
z
[
i
]
=
Functor
()(
x
[
i
],
y
[
i
]);
}
}
template
<
template
<
typename
>
class
Functor
>
void
UnaryLogicalCompute
<
Functor
>::
PrepareForRun
()
{}
template
<
template
<
typename
>
class
Functor
>
template
<
class
Functor
>
void
UnaryLogicalCompute
<
Functor
>::
Run
()
{
auto
&
param
=
this
->
Param
<
operators
::
LogicalParam
>
();
const
size_t
count
=
param
.
X
->
numel
();
bool
*
z
=
param
.
Out
->
template
mutable_data
<
bool
>();
const
auto
x
=
param
.
X
->
template
data
<
bool
>();
using
LogicalFunctor
=
Functor
<
bool
>
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
z
[
i
]
=
Logical
Functor
()(
x
[
i
]);
z
[
i
]
=
Functor
()(
x
[
i
]);
}
}
}
// namespace
arm
}
// namespace
host
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
logical_xor
,
k
ARM
,
k
Float
,
k
NCHW
,
paddle
::
lite
::
kernels
::
arm
::
BinaryLogicalCompute
<
paddle
::
lite
::
kernels
::
arm
::
_LogicalXorFunctor
>
,
k
Host
,
k
Any
,
k
Any
,
paddle
::
lite
::
kernels
::
host
::
BinaryLogicalCompute
<
paddle
::
lite
::
kernels
::
host
::
_LogicalXorFunctor
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
logical_and
,
k
ARM
,
k
Float
,
k
NCHW
,
paddle
::
lite
::
kernels
::
arm
::
BinaryLogicalCompute
<
paddle
::
lite
::
kernels
::
arm
::
_LogicalAndFunctor
>
,
k
Host
,
k
Any
,
k
Any
,
paddle
::
lite
::
kernels
::
host
::
BinaryLogicalCompute
<
paddle
::
lite
::
kernels
::
host
::
_LogicalAndFunctor
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
logical_or
,
k
ARM
,
k
Float
,
k
NCHW
,
paddle
::
lite
::
kernels
::
arm
::
BinaryLogicalCompute
<
paddle
::
lite
::
kernels
::
arm
::
_LogicalOrFunctor
>
,
k
Host
,
k
Any
,
k
Any
,
paddle
::
lite
::
kernels
::
host
::
BinaryLogicalCompute
<
paddle
::
lite
::
kernels
::
host
::
_LogicalOrFunctor
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
logical_not
,
k
ARM
,
k
Float
,
k
NCHW
,
paddle
::
lite
::
kernels
::
arm
::
UnaryLogicalCompute
<
paddle
::
lite
::
kernels
::
arm
::
_LogicalNotFunctor
>
,
k
Host
,
k
Any
,
k
Any
,
paddle
::
lite
::
kernels
::
host
::
UnaryLogicalCompute
<
paddle
::
lite
::
kernels
::
host
::
_LogicalNotFunctor
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kBool
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kBool
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
lite/kernels/
arm
/logical_compute.h
→
lite/kernels/
host
/logical_compute.h
浏览文件 @
4433379d
...
...
@@ -13,41 +13,33 @@
// limitations under the License.
#pragma once
#include <stdint.h>
#include "lite/backends/arm/math/type_trans.h"
#include "lite/core/kernel.h"
#include "lite/
operators/logical_op
.h"
#include "lite/
core/op_registry
.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
// template <typename Functor>
template
<
template
<
typename
>
class
Functor
>
namespace
host
{
template
<
class
Functor
>
class
BinaryLogicalCompute
:
public
KernelLite
<
TARGET
(
k
ARM
),
PRECISION
(
kFloat
)
>
{
:
public
KernelLite
<
TARGET
(
k
Host
),
PRECISION
(
kAny
),
DATALAYOUT
(
kAny
)
>
{
public:
using
param_t
=
operators
::
LogicalParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
~
BinaryLogicalCompute
()
{}
};
template
<
template
<
typename
>
class
Functor
>
class
UnaryLogicalCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
template
<
class
Functor
>
class
UnaryLogicalCompute
:
public
KernelLite
<
TARGET
(
kHost
),
PRECISION
(
kAny
),
DATALAYOUT
(
kAny
)
>
{
public:
using
param_t
=
operators
::
LogicalParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
~
UnaryLogicalCompute
()
{}
};
}
// namespace arm
}
// namespace host
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/CMakeLists.txt
浏览文件 @
4433379d
...
...
@@ -20,7 +20,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_BM AND NOT LIT
#lite_cc_test(test_kernel_sequence_softmax_compute SRCS sequence_softmax_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_im2sequence_compute SRCS im2sequence_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_kernel_compare_compute SRCS compare_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
#lite_cc_test(test_kernel_logical_xor_compute SRCS logical_compute_test.cc DEPS arena_framework
${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_kernel_logical_compute SRCS logical_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_topk_compute SRCS topk_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_increment_compute SRCS increment_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/logical_compute_test.cc
浏览文件 @
4433379d
...
...
@@ -20,86 +20,118 @@
namespace
paddle
{
namespace
lite
{
bool
_logical_xor_func
(
const
bool
&
a
,
const
bool
&
b
)
{
return
(
a
||
b
)
&&
!
(
a
&&
b
);
}
bool
_logical_and_func
(
const
bool
&
a
,
const
bool
&
b
)
{
return
(
a
&&
b
);
}
template
<
bool
(
*
T
)(
const
bool
&
,
const
bool
&
)>
class
LogicalXorTester
:
public
arena
::
TestCase
{
struct
_logical_and_func
{
inline
bool
operator
()(
const
bool
&
a
,
const
bool
&
b
)
const
{
return
a
&&
b
;
}
};
struct
_logical_or_func
{
inline
bool
operator
()(
const
bool
&
a
,
const
bool
&
b
)
const
{
return
a
||
b
;
}
};
struct
_logical_xor_func
{
inline
bool
operator
()(
const
bool
&
a
,
const
bool
&
b
)
const
{
return
(
a
||
b
)
&&
!
(
a
&&
b
);
}
};
struct
_logical_not_func
{
inline
bool
operator
()(
const
bool
&
a
,
const
bool
&
b
)
const
{
return
!
a
;
}
};
template
<
class
Functor
>
class
LogicalTester
:
public
arena
::
TestCase
{
protected:
std
::
string
input_x_
=
"x"
;
std
::
string
input_y_
=
"y"
;
std
::
string
output_
=
"out"
;
DDim
dims_
{{
3
,
5
,
4
,
4
}};
std
::
string
op_type_
=
"logical_xor"
;
std
::
string
x_
=
"x"
;
std
::
string
y_
=
"y"
;
std
::
string
out_
=
"out"
;
DDim
dims_
{{
2
,
3
,
4
,
5
}};
public:
LogicalXorTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
dims
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
)
{}
LogicalTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
const
std
::
string
&
op_type
)
:
TestCase
(
place
,
alias
),
op_type_
(
op_type
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
*
out
=
scope
->
NewTensor
(
output_
);
CHECK
(
out
);
auto
*
x
=
scope
->
FindTensor
(
x_
);
const
bool
*
x_data
=
x
->
data
<
bool
>
();
const
Tensor
*
y
=
nullptr
;
const
bool
*
y_data
=
nullptr
;
if
(
op_type_
!=
"logical_not"
)
{
y
=
scope
->
FindTensor
(
y_
);
y_data
=
y
->
data
<
bool
>
();
}
auto
*
out
=
scope
->
NewTensor
(
out_
);
out
->
Resize
(
dims_
);
bool
*
out_data
=
out
->
mutable_data
<
bool
>
();
auto
*
x
=
scope
->
FindTensor
(
input_x_
);
const
bool
*
x_data
=
x
->
data
<
bool
>
();
auto
*
y
=
scope
->
FindTensor
(
input_y_
);
const
bool
*
y_data
=
y
->
data
<
bool
>
();
for
(
int
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
// out_data[i] = (x_data[i] || y_data[i]) && !((x_data[i] && y_data[i]))
;
out_data
[
i
]
=
T
(
x_data
[
i
],
y_data
[
i
]
);
bool
y_tmp
=
(
y_data
==
nullptr
)
?
true
:
y_data
[
i
]
;
out_data
[
i
]
=
Functor
()(
x_data
[
i
],
y_tmp
);
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"logical_xor"
);
op_desc
->
SetInput
(
"X"
,
{
input_x_
});
op_desc
->
SetInput
(
"Y"
,
{
input_y_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetType
(
op_type_
);
op_desc
->
SetInput
(
"X"
,
{
x_
});
if
(
op_type_
!=
"logical_not"
)
{
op_desc
->
SetInput
(
"Y"
,
{
y_
});
}
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
}
void
PrepareData
()
override
{
// std::vector<bool> data(dims_.production());
// std::vector<char> datay(dims_.production());
bool
*
data
;
bool
*
datay
;
data
=
reinterpret_cast
<
bool
*>
(
malloc
(
dims_
.
production
()
*
sizeof
(
bool
)));
datay
=
reinterpret_cast
<
bool
*>
(
malloc
(
dims_
.
production
()
*
sizeof
(
bool
)));
LOG
(
INFO
)
<<
"dims_.production()"
<<
":::"
<<
dims_
.
production
();
for
(
int
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
data
[
i
]
=
1
;
datay
[
i
]
=
1
;
bool
*
dx
=
new
bool
[
dims_
.
production
()];
for
(
int64_t
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
dx
[
i
]
=
(
i
%
3
==
0
);
}
SetCommonTensor
(
x_
,
dims_
,
dx
);
delete
dx
;
SetCommonTensor
(
input_x_
,
dims_
,
data
);
SetCommonTensor
(
input_y_
,
dims_
,
datay
);
if
(
op_type_
!=
"logical_not"
)
{
bool
*
dy
=
new
bool
[
dims_
.
production
()];
for
(
int64_t
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
dy
[
i
]
=
(
i
%
2
==
0
);
}
SetCommonTensor
(
y_
,
dims_
,
dy
);
delete
dy
;
}
}
};
void
test_logical
(
Place
place
)
{
DDimLite
dims
{{
3
,
5
,
4
,
4
}};
std
::
unique_ptr
<
arena
::
TestCase
>
logical_xor_tester
(
new
LogicalXorTester
<
_logical_xor_func
>
(
place
,
"def"
,
dims
)
);
arena
::
Arena
arena_xor
(
std
::
move
(
logical_xor_tester
),
place
,
1
);
void
TestLogical
(
Place
place
,
float
abs_error
)
{
std
::
unique_ptr
<
arena
::
TestCase
>
logical_and_tester
(
new
LogicalTester
<
_logical_and_func
>
(
place
,
"def"
,
"logical_and"
));
arena
::
Arena
arena_and
(
std
::
move
(
logical_and_tester
),
place
,
abs_error
);
arena
_and
.
TestPrecision
(
);
arena_xor
.
TestPrecision
();
std
::
unique_ptr
<
arena
::
TestCase
>
logical_or_tester
(
new
LogicalTester
<
_logical_or_func
>
(
place
,
"def"
,
"logical_or"
));
arena
::
Arena
arena_or
(
std
::
move
(
logical_or_tester
),
place
,
abs_error
);
arena_or
.
TestPrecision
();
std
::
unique_ptr
<
arena
::
TestCase
>
logical_and_tester
(
new
LogicalXorTester
<
_logical_and_func
>
(
place
,
"def"
,
dims
));
arena
::
Arena
arena_and
(
std
::
move
(
logical_and_tester
),
place
,
1
);
std
::
unique_ptr
<
arena
::
TestCase
>
logical_xor_tester
(
new
LogicalTester
<
_logical_xor_func
>
(
place
,
"def"
,
"logical_xor"
));
arena
::
Arena
arena_xor
(
std
::
move
(
logical_xor_tester
),
place
,
abs_error
);
arena_xor
.
TestPrecision
();
arena_and
.
TestPrecision
();
std
::
unique_ptr
<
arena
::
TestCase
>
logical_not_tester
(
new
LogicalTester
<
_logical_not_func
>
(
place
,
"def"
,
"logical_not"
));
arena
::
Arena
arena_not
(
std
::
move
(
logical_not_tester
),
place
,
abs_error
);
arena_not
.
TestPrecision
();
}
TEST
(
Logical
,
precision
)
{
// #ifdef LITE_WITH_X86
// // Place place(TARGET(kX86))
;
// // #endif
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
test_logical
(
place
)
;
Place
place
;
float
abs_error
=
1e-5
;
#if defined(LITE_WITH_ARM)
place
=
TARGET
(
kHost
);
#else
return
;
#endif
TestLogical
(
place
,
abs_error
);
}
}
// namespace lite
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录