提交 416ca58e 编写于 作者: H hjchen2

Merge branch 'ocr_ctc' of https://github.com/hjchen2/paddle-mobile into ocr_ctc

......@@ -10,6 +10,7 @@ option(LOG_PROFILE "log profile" OFF)
option(CPU "armv7 with neon" ON)
option(GPU_MALI "mali gpu" OFF)
option(GPU_CL "opencl gpu" OFF)
option(FPGA "fpga" OFF)
if(FPGA)
option(FPGAV1 "fpga v1" ON)
......@@ -144,7 +145,7 @@ if(FPGA)
endforeach()
file(GLOB_RECURSE _tmp_list src/operators/kernel/fpga/V2/*.h src/fpga/V2/*.h)
foreach(f ${_tmp_list})
list(REMOVE_ITEM PADDLE_MOBILE_CC ${f})
list(REMOVE_ITEM PADDLE_MOBILE_H ${f})
endforeach()
endif()
if(FPGAV2)
......@@ -156,7 +157,7 @@ if(FPGA)
endforeach()
file(GLOB_RECURSE _tmp_list src/operators/kernel/fpga/V1/*.h src/fpga/V1/*.h)
foreach(f ${_tmp_list})
list(REMOVE_ITEM PADDLE_MOBILE_CC ${f})
list(REMOVE_ITEM PADDLE_MOBILE_H ${f})
endforeach()
endif()
......
......@@ -7,11 +7,21 @@
<!--[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle-Mobile.svg)](https://github.com/PaddlePaddle/Paddle-Mobile/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)-->
Welcome to Paddle-Mobile GitHub project。Paddle-Mobile is a project of PaddlePaddle as well as a deep learning framework for embedded platforms.
欢迎来到 Paddle-Mobile GitHub 项目。Paddle-Mobile是PaddlePaddle组织下的项目,是一个致力于嵌入式平台的深度学习的框架。
## Features
- high performance in support of ARM CPU
- support Mali GPU
- support Andreno GPU
- support the realization of GPU Metal on Apple devices
- support implementation on ZU5、ZU9 and other FPGA-based development boards
- support implementation on Raspberry Pi and other arm-linux development boards
## Features
- 高性能支持ARM CPU
- 支持Mali GPU
- 支持Andreno GPU
......@@ -19,6 +29,7 @@
- 支持ZU5、ZU9等FPGA开发板
- 支持树莓派等arm-linux开发板
## Demo
- [ANDROID](https://github.com/xiebaiyuan/paddle-mobile-demo)
......@@ -26,6 +37,27 @@
[https://github.com/PaddlePaddle/paddle-mobile/tree/develop/demo](https://github.com/PaddlePaddle/paddle-mobile/tree/develop/demo)
## Documentation
### Documentation of design
If you want to know more details about the documentation of paddle-mobile design, please refer to the link as follows. There are many previous designs and discussion: [issue](https://github.com/PaddlePaddle/paddle-mobile/issues).
[link of documentation of design](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/design_doc.md)
### Documentation of development
Documentation of development is mainly about building, running and other tasks.As a developer,you can use it with the help of contributed documents.
* [iOS](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_ios.md)
* [Android_CPU](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_android.md)
* [Android_GPU](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_android_GPU.md)
* [FPGA](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_fpga.md)
* [ARM_LINUX](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_arm_linux.md)
### How to contribute your documents
- [tutorial link to contribute documents](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/CONTRIBUTING.md)
- Main procedure of contributing code is covered in the document above.If you have other problems during the procedure,please send them as [issue](https://github.com/PaddlePaddle/paddle-mobile/issues). We will deal with it as quickly as possible.
## 文档
### 设计文档
......@@ -46,6 +78,24 @@
- [贡献文档链接](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/CONTRIBUTING.md)
- 上面文档中涵盖了主要的贡献代码流程,如果在实践中您还遇到了其他问题,可以发[issue](https://github.com/PaddlePaddle/paddle-mobile/issues)。我们看到后会尽快处理。
## Acquision of Models
At present Paddle-Mobile only supports Paddle fluid training model. Models wiil be operated regularly after transformation if you have various models.
### 1. Use Paddle Fluid directly to train
It is the most reliable method to be recommanded
### 2. Transform Caffe to Paddle Fluid model
[https://github.com/PaddlePaddle/models/tree/develop/fluid/image_classification/caffe2fluid](https://github.com/PaddlePaddle/models/tree/develop/fluid/image_classification/caffe2fluid)
### 3. ONNX
ONNX is expanded as Open Neural Network Exchange. The project is aimed to make a full communication and usage among diffrent nerual network development frameworks.
Except for directly using fluid models trained by PaddlePaddle,you can also get certain Paddle fluid models through onnx transformation.
At present,work in support of onnx is also under operation in Baidu. Related tranformation project can be referred to here:
[https://github.com/PaddlePaddle/paddle-onnx](https://github.com/PaddlePaddle/paddle-onnx)
### 4. Download parts of testing models and testing pictures
[http://mms-graph.bj.bcebos.com/paddle-mobile%2FmodelsAndImages.zip](http://mms-graph.bj.bcebos.com/paddle-mobile%2FmodelsAndImages.zip)
## 模型获得
目前Paddle-Mobile仅支持Paddle fluid训练的模型。如果你手中的模型是不同种类的模型,需要进行模型转换才可以运行。
......@@ -64,6 +114,22 @@ ONNX全称为“Open Neural Network Exchange”,即“开放的神经网络切
### 4. 部分测试模型和测试图片下载
[http://mms-graph.bj.bcebos.com/paddle-mobile%2FmodelsAndImages.zip](http://mms-graph.bj.bcebos.com/paddle-mobile%2FmodelsAndImages.zip)
<!--## Online output of simple search
Gif as following is the application output of online main part detection of simple search app
![ezgif-1-050a733dfb](http://otkwwi4x8.bkt.clouddn.com/2018-07-05-ezgif-1-050a733dfb.gif)-->
## Ask Question
Welcome to put forward or tackle with our problems,You can post your question in our issue modular on github. [Github Issues](https://github.com/PaddlePaddle/paddle-mobile/issues).
## Copyright and License
Paddle-Mobile provide relatively unstricted Apache-2.0 Open source agreement [Apache-2.0 license](LICENSE).
## Old version Mobile-Deep-Learning
Original MDL(Mobile-Deep-Learning) project has been transferred to [Mobile-Deep-Learning](https://github.com/allonli/mobile-deep-learning)
<!--## 简单搜索线上效果
如下gif是简单搜索app的线上主体检测应用效果
......
......@@ -24,8 +24,6 @@ namespace fpga {
#define USE_RELU 1
#define USE_BIAS 2
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }
void format_image(framework::Tensor *image_tensor) {
auto dims = image_tensor->dims();
auto channel = dims[1], height = dims[2], width = dims[3];
......@@ -96,10 +94,6 @@ int get_aligned_filter_element_num(int chw) {
return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}
int get_aligned_filter_num(int num) {
return align_to_x(num, FILTER_NUM_ALIGNMENT);
}
void format_filter(framework::Tensor *filter_tensor, float max_value,
int group_num) {
filter_tensor->scale[0] = float(max_value / 127.0); // NOLINT
......@@ -177,46 +171,37 @@ void format_concat_output(framework::Tensor *out, int height, int width,
void expand_conv_arg(ConvArgs *arg) {
ConvArgs args = *arg;
uint64_t filterlen = (uint64_t)args.kernel.width *
(uint64_t)args.kernel.height *
(uint64_t)args.image.channels;
filterlen = align_to_x(filterlen, FILTER_ELEMENT_ALIGNMENT);
filterlen *= align_to_x((uint64_t)args.filter_num, FILTER_NUM_ALIGNMENT);
uint64_t fpga_bias_scale_len =
auto fpga_bias_scale_len =
align_to_x(args.filter_num / args.group_num, 8) * args.group_num;
uint64_t output_height =
auto output_height =
(args.image.height + args.image.pad_height * 2 - args.kernel.height) /
args.kernel.stride_h +
1;
uint64_t output_width =
auto output_width =
(args.image.width + args.image.pad_width * 2 - args.kernel.width) /
args.kernel.stride_w +
1;
uint64_t output_size =
output_height * output_width * (uint64_t)args.filter_num;
auto filter_per_group = (uint64_t)(args.filter_num / args.group_num);
auto channel_per_group = (uint64_t)(args.image.channels / args.group_num);
uint64_t image_row_count = ((uint64_t)args.image.width) *
((uint64_t)args.image.channels); // without align
uint64_t image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
uint64_t image_one_pad_per_row =
align_to_x(image_row_count, IMAGE_ALIGNMENT) +
((uint64_t)args.image.pad_width) * ((uint64_t)args.image.channels);
uint64_t filter_amount_all =
align_to_x(((uint64_t)args.kernel.height) *
((uint64_t)args.kernel.width) * channel_per_group,
auto filter_per_group = args.filter_num / args.group_num;
auto channel_per_group = args.image.channels / args.group_num;
auto image_row_count = args.image.width * args.image.channels;
auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
args.image.pad_width * args.image.channels;
auto filter_amount_all =
align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
FILTER_ELEMENT_ALIGNMENT);
uint64_t output_amount_per_row =
align_to_x(output_width * ((uint64_t)args.filter_num), IMAGE_ALIGNMENT);
auto output_amount_per_row =
align_to_x(output_width * args.filter_num, IMAGE_ALIGNMENT);
// find the opt partition strategy
uint64_t res_win;
uint64_t res_fit = 0;
for (res_win = 1; res_win <= output_width; res_win = res_win + 1) {
for (res_win = 1; res_win <= output_width; res_win++) {
if ((align_to_x(
(args.image.channels *
(args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
......@@ -238,48 +223,48 @@ void expand_conv_arg(ConvArgs *arg) {
}
res_fit = res_win;
uint64_t block_num = (output_width + res_fit - 1) / res_fit;
uint64_t block_len = res_fit;
uint64_t block_last = output_width - res_fit * (block_num - 1);
auto block_num = (output_width + res_fit - 1) / res_fit;
auto block_len = res_fit;
auto block_last = output_width - res_fit * (block_num - 1);
uint64_t res_amount_per_row = output_width * args.filter_num;
uint64_t res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
auto res_amount_per_row = output_width * args.filter_num;
auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
uint64_t image_block_amount_per_row =
args.kernel.stride_w * (res_fit)*args.image.channels;
uint64_t filter_pad_width_mul_channel =
auto image_block_amount_per_row =
args.kernel.stride_w * res_fit * args.image.channels;
auto filter_pad_width_mul_channel =
args.image.pad_width * args.image.channels;
uint64_t image_amount_per_row_multi_win_first =
auto image_amount_per_row_multi_win_first =
image_amount_per_row * (4 * args.kernel.stride_h - args.image.pad_height);
uint64_t image_amount_per_row_multi_win =
auto image_amount_per_row_multi_win =
image_amount_per_row * (4 * args.kernel.stride_h);
uint64_t image_block_num = block_num;
uint64_t image_block_len =
auto image_block_num = block_num;
auto image_block_len =
align_to_x((args.image.channels *
(args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
IMAGE_ALIGNMENT) /
16 +
1;
uint64_t image_block_len_last =
auto image_block_len_last =
align_to_x(
(args.image.channels *
(args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
IMAGE_ALIGNMENT) /
16 +
1;
uint64_t image_win_cnt = block_len;
uint64_t image_win_cnt_last = block_last;
uint64_t res_row_data_align4_pad = res_amount_per_row_pad / 8;
uint64_t prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
auto image_win_cnt = block_len;
auto image_win_cnt_last = block_last;
auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
auto prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
if (prog_full_cnt == 1023) {
prog_full_cnt--;
}
uint64_t post_prog_full_cnt =
auto post_prog_full_cnt =
(512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
: 0;
uint64_t cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
(*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
(*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
......@@ -449,7 +434,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg->sub_conv_num = (uint32_t)stride_h;
arg->filter_num = (uint32_t)filter->dims()[0];
int sub_conv_num = arg->sub_conv_num;
int sub_stride = 1;
int sub_pad = deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],
padding_w, stride_w);
int sub_filter_width = deconv_filter::deconv_get_sub_filter_axis(
......@@ -466,16 +450,12 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
stride_w, (int)filter->dims()[3], padding_w);
arg->conv_args = (ConvArgs *)fpga_malloc(sub_conv_num * sizeof(ConvArgs));
int sub_channels = (int)input->dims()[1];
int omit_size = arg->omit_size;
int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
auto sub_channels = (int)input->dims()[1];
int sub_filter_num = sub_conv_num * (arg->filter_num);
int conv_output_size =
(align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
sub_output_height;
int ouput_size = conv_output_size * sub_conv_num;
int align_sub_filter_num = align_to_x(sub_filter_num, FILTER_NUM_ALIGNMENT);
int align_sub_filter_count =
......@@ -485,7 +465,7 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
align_sub_filter_count * align_sub_filter_num;
for (int i = 0; i < sub_conv_num; ++i) {
arg->conv_args[i].filter_num = (arg->sub_conv_num) * (arg->filter_num);
arg->conv_args[i].filter_num = arg->sub_conv_num * arg->filter_num;
arg->conv_args[i].group_num = (uint32_t)group_num;
arg->conv_args[i].filter_scale_address = filter->scale;
......@@ -496,7 +476,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg->conv_args[i].kernel.stride_w = 1;
arg->conv_args[i].kernel.stride_h = 1;
// DeconvParam.conv_args[i].image.address = (void*)ptr_image;
arg->conv_args[i].image.scale_address = input->scale;
arg->conv_args[i].image.channels = (uint32_t)sub_channels;
arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
......@@ -504,30 +483,31 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg->conv_args[i].image.pad_width = (uint32_t)sub_pad;
arg->conv_args[i].image.pad_height = (uint32_t)sub_pad;
arg->conv_args[i].image.address = input_ptr;
arg->conv_args[i].sb_address = (void *)bs_ptr;
arg->conv_args[i].sb_address = bs_ptr;
auto filter_sub_space =
(char *)fpga_malloc(align_conv_sub_filter_count * sizeof(char));
fpga_copy(filter_sub_space,
(char *)filter_ptr + i * align_conv_sub_filter_count,
(size_t)align_conv_sub_filter_count);
arg->conv_args[i].filter_address = (void *)(filter_sub_space);
arg->conv_args[i].filter_address = filter_sub_space;
fpga_flush(filter_sub_space, (size_t)align_conv_sub_filter_count);
if (sub_conv_num == 1) {
arg->conv_args[i].output.address = out_ptr;
arg->conv_args[i].output.scale_address = out->scale;
} else {
auto ptr_output = (half *)fpga_malloc(conv_output_size * sizeof(half));
arg->conv_args[i].output.address = (void *)((half *)ptr_output);
auto ptr_output = fpga_malloc(conv_output_size * sizeof(half));
arg->conv_args[i].output.address = ptr_output;
auto ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
arg->conv_args[i].output.scale_address = ptr_output_scale;
}
expand_conv_arg(&arg->conv_args[i]);
}
arg->output.address = out_ptr;
arg->output.scale_address = out->scale;
// fpga_free(filter_ptr);
filter->reset_data_ptr(nullptr);
} // fill_deconv_arg
} // namespace fpga
......
......@@ -21,7 +21,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace fpga {
int get_align_image_cw(int cw);
void format_image(framework::Tensor* image_tensor);
void format_fp16_ofm(framework::Tensor* ofm_tensor); // only allocate memory
void format_fp32_ofm(framework::Tensor* ofm_tensor);
......@@ -30,7 +29,6 @@ float filter_find_max(framework::Tensor* filter_tensor);
int get_filter_num_per_div(framework::Tensor* filter_tensor, int group_num);
int get_plit_num(framework::Tensor* filter_tensor);
int get_aligned_filter_element_num(int chw);
int get_aligned_filter_num(int num);
void format_filter(framework::Tensor* filter_tensor, float max_value,
int group_num);
void format_fc_filter(framework::Tensor* filter_tensor, float max_value);
......
......@@ -40,10 +40,9 @@ inverse kernel weights of each channel for every filter
void deconv_inverse_filter(float** data_in, int num, int channel, int width,
int height) {
float* tmp = *data_in;
// float fix_range = 127;// float scale = fix_range / max;
int data_size = num * channel * width * height;
int hw_len = height * width;
float* tmp_data = (float*)fpga_malloc(data_size * sizeof(float));
auto tmp_data = (float*)fpga_malloc(data_size * sizeof(float));
for (int i = 0; i < num; ++i) {
for (int j = 0; j < channel; ++j) {
for (int k = 0; k < hw_len; ++k) {
......@@ -52,7 +51,7 @@ void deconv_inverse_filter(float** data_in, int num, int channel, int width,
}
}
}
*data_in = (float*)tmp_data; //
*data_in = tmp_data;
fpga_free(tmp);
}
......@@ -61,8 +60,7 @@ void deconv_inverse_filter(float** data_in, int num, int channel, int width,
*/
int deconv_calc_sub_pad(int filter_axis, int pad, int stride) {
if (stride == 0 || ((filter_axis - pad - 1) < 0)) {
// error
return 0;
PADDLE_MOBILE_ENFORCE(false, "Wrong deconv parameters");
}
return (filter_axis - pad - 1) / stride;
}
......@@ -79,11 +77,8 @@ int deconv_get_sub_out_axis(int image_axis, int sub_pad, int sub_filter_axis) {
position. so the omit rows or columns is (stride - )
*/
int deconv_get_omit(int stride, int filter_width, int pad) {
if (((filter_width - pad) <= 0)) { // ((filter_width-pad) > stride) ||
// error
return 0;
}
int idx = 1;
PADDLE_MOBILE_ENFORCE(filter_width > pad, "Wrong deconv parameters");
int idx;
bool flag = false;
for (idx = 1; idx <= stride; ++idx) {
int j = idx;
......@@ -102,10 +97,6 @@ int deconv_get_omit(int stride, int filter_width, int pad) {
return (stride - idx);
}
int deconv_get_sub_filter_num(int filter_num, int stride) {
return filter_num * stride;
}
void deconv_get_sub_filter(char** data_in, int height, int width,
int sub_conv_n, int kernel_num, int channel) {
char* ptr_tmp = *data_in;
......@@ -245,7 +236,6 @@ void deconv_format_filter(float** data_in, int num, int channel, int height,
char* ptr_space = (char*)fpga_malloc(sub_conv_n * align_offset *
sizeof(char)); // continuous space
for (int i = 0; i < sub_conv_n; ++i) {
int offset = i * origin_offset;
char* ptr_tmp = (ptr_ptr_data)[i];
filter::align_element(&ptr_tmp, sub_num, sub_chw);
......
......@@ -21,7 +21,6 @@ namespace deconv_filter {
void deconv_inverse_filter(float** data_in, int num, int channel, int width,
int height);
int deconv_calc_sub_pad(int filter_axis, int pad, int stride);
int deconv_get_sub_filter_num(int filter_num, int stride);
int deconv_get_sub_filter_axis(int filter_axis, int stride);
int deconv_get_sub_out_axis(int image_axis, int sub_pad, int sub_filter_axis);
int deconv_get_omit(int stride, int filter_width, int pad);
......
此差异已折叠。
......@@ -153,10 +153,6 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
uint64_t _nr = DIV_ROUND_UP(size, FPGA_PAGE_SIZE);
unsigned int nr = (unsigned int)_nr;
int ret = 0;
DLOG << size;
DLOG << _nr;
DLOG << nr;
uint64_t a_size = FPGA_PAGE_SIZE * nr;
DLOG << a_size;
......@@ -283,7 +279,7 @@ int fpga_memory_add() {
return 0;
}
uint64_t vaddr_to_paddr(void *address) {
uint64_t vaddr_to_paddr_driver(void *address) {
uint64_t paddr = 0;
auto iter = g_fpgainfo.fpga_vaddr2paddr_map.find(address);
if (iter != g_fpgainfo.fpga_vaddr2paddr_map.end()) {
......@@ -315,7 +311,7 @@ void *fpga_reg_free(void *ptr) {
g_fpgainfo.fpga_addr2size_map.erase(iter);
munmap(ptr, size);
} else {
DLOG << "Invalid pointer";
DLOG << "Invalid pointer" << ptr;
}
}
......@@ -347,7 +343,7 @@ void fpga_free_driver(void *ptr) {
g_fpgainfo.fpga_addr2size_map.erase(iter);
munmap(ptr, size);
p_addr = vaddr_to_paddr(ptr);
p_addr = vaddr_to_paddr_driver(ptr);
pos = (p_addr - g_fpgainfo.memory_info->mem_start) / FPGA_PAGE_SIZE;
/*clear bitmap*/
......@@ -361,7 +357,7 @@ void fpga_free_driver(void *ptr) {
g_fpgainfo.fpga_vaddr2paddr_map.erase(iter);
}
} else {
DLOG << "Invalid pointer";
DLOG << "Invalid pointer" << ptr;
}
}
......@@ -373,7 +369,7 @@ int fpga_flush_driver(void *address, size_t size) {
struct MemoryCacheArgs args;
uint64_t p_addr;
p_addr = vaddr_to_paddr(address);
p_addr = vaddr_to_paddr_driver(address);
args.offset = (void *)(p_addr - FPGA_MEM_PHY_ADDR); // NOLINT
args.size = size;
......@@ -385,7 +381,7 @@ int fpga_invalidate_driver(void *address, size_t size) {
struct MemoryCacheArgs args;
uint64_t p_addr;
p_addr = vaddr_to_paddr(address);
p_addr = vaddr_to_paddr_driver(address);
args.offset = (void *)(p_addr - FPGA_MEM_PHY_ADDR); // NOLINT
args.size = size;
......
......@@ -31,8 +31,8 @@ namespace driver {
#define FPGA_REG_PHY_ADDR 0xa0000000
#define FPGA_REG_SIZE 0x1000
#define FPGA_MEM_PHY_ADDR 0x20000000
#define FPGA_MEM_SIZE 0x20000000
#define FPGA_MEM_PHY_ADDR 0x40000000
#define FPGA_MEM_SIZE 0x80000000
#define FPGA_PAGE_SIZE (16UL * 1024UL)
......@@ -122,15 +122,11 @@ void *fpga_malloc_driver(size_t size);
void fpga_free_driver(void *ptr);
void fpga_copy_driver(void *dest, const void *src, size_t num);
int fpga_flush_driver(void *address, size_t size);
int fpga_invalidate_driver(void *address, size_t size);
/*pe*/
uint64_t vaddr_to_paddr(void *address);
uint64_t vaddr_to_paddr_driver(void *address);
int fpga_regpoll(uint64_t reg, uint64_t val, int time);
......
......@@ -115,7 +115,7 @@ int fpga_invalidate(void *address, size_t size) {
}
uint64_t vaddr_to_paddr(void *address) {
#ifdef PADDLE_MOBILE_ZU5
return driver::vaddr_to_paddr(address);
return driver::vaddr_to_paddr_driver(address);
#else
return 0;
#endif
......
......@@ -37,6 +37,18 @@ enum LayoutType {
LAYOUT_HWC = 0,
};
enum ActivationType {
NONE = 0,
LEAKYRELU = 1,
SIGMOID = 2,
TANH = 3,
};
struct ActivationArgs {
enum ActivationType activation_type;
int16_t leaky_relu_negative_slope;
};
struct KernelArgs {
uint32_t width;
uint32_t height;
......@@ -58,7 +70,10 @@ struct ImageOutputArgs {
void* address; // output result address;
float* scale_address; // output scale address;
uint64_t timer_cnt; // time counter for FPGA computation
struct ActivationArgs
activation; // To select activation and specify (Leaky)Relu parameter.
};
#ifdef PADDLE_MOBILE_FPGA_V1
struct ConvDriverParam {
uint64_t image_address_phy;
......@@ -198,7 +213,11 @@ struct DeconvArgs {
struct ConvArgs* conv_args;
};
static inline int align_to_x(int num, int x) { return (num + x - 1) / x * x; }
// static inline int align_to_x(int num, int x) { return (num + x - 1) / x * x;
// }
static inline uint32_t align_to_x(int64_t num, int64_t x) {
return ((uint32_t)(num + x) - 1) / (uint32_t)x * (uint32_t)x;
}
int16_t fp32_2_fp16(float fp32_num);
float fp16_2_fp32(int16_t fp16_num);
......
......@@ -456,9 +456,8 @@ void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
char **data) {}
template <>
void Executor<GPU_CL, Precision::FP32>::LoadMemory(const VarDesc var_desc,
float *tensorInput,
char **data) {
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
float *tensorInput, char **data) {
// 1. version
uint32_t version = *reinterpret_cast<uint32_t *>(*data);
......
......@@ -202,50 +202,50 @@ double PaddleMobile<CPU, float>::GetPredictTime() {
#endif
#ifdef PADDLE_MOBILE_FPGA
template <typename Device, T P>
void PaddleMobile<Device, P>::InjectVariable(const framework::Tensor &t,
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
std::string var_name) {
executor_->InjectVariable(t, var_name);
}
template <typename Device, T P>
void PaddleMobile<Device, P>::FeedData(const framework::Tensor &t) {
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
executor_->FeedData(t);
}
template <typename Device, T P>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, P>::FetchResult(
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
int id) {
return executor_->FetchResult(id);
}
template <typename Device, T P>
void PaddleMobile<Device, P>::Predict_From_To(int start, int end) {
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
executor_->Predict_From_To(start, end);
}
template <typename Device, T P>
void PaddleMobile<Device, P>::Predict_From(int start) {
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
executor_->Predict_From(start);
}
template <typename Device, T P>
void PaddleMobile<Device, P>::Predict_To(int end) {
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
executor_->Predict_To(end);
}
#endif
#ifdef PADDLE_MOBILE_CL
static std::mutex lc;
template <typename Device, T P>
void PaddleMobile<Device, P>::SetCLPath(std::string path) {
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
std::lock_guard<std::mutex> lock(lc);
if (framework::CLEngine::Instance()->GetCLPath() == "") {
framework::CLEngine::Instance()->setClPath(path);
}
}
template <>
double PaddleMobile<GPU_CL, T::FP32>::GetPredictTime() {
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
cl_int status;
cl_uint nPlatform;
clGetPlatformIDs(0, NULL, &nPlatform);
......@@ -443,8 +443,8 @@ double PaddleMobile<GPU_CL, T::FP32>::GetPredictTime() {
return -1;
}
}
template <typename Device, T P>
int PaddleMobile<Device, P>::readText(
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
const char *kernelPath,
char **pcode) { // 读取文本文件放入 pcode,返回字符串长度
FILE *fp;
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "operators/kernel/feed_kernel.h"
#include "framework/cl/cl_tensor.h"
namespace paddle_mobile {
namespace operators {
......@@ -43,8 +44,8 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> &param) {
const int Stride2 = out_C * out_H * out_W;
const int Stride1 = out_H * out_W;
const int Stride0 = out_W;
CLTensor input_cl_tensor(this->cl_helper_.CLContext(),
this->cl_helper_.CLCommandQueue());
framework::CLTensor input_cl_tensor(this->cl_helper_.CLContext(),
this->cl_helper_.CLCommandQueue());
input_cl_tensor.Resize(input->dims());
cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input_data);
......
......@@ -94,8 +94,9 @@ void FusionFcCompute(const FusionFcParam<GPU_CL> &param, cl_context context,
memory::Copy(out_data + i * classes, input_z_data, sizeof(float) * classes);
}
math::MatMul<float>(x_matrix, false, y_matrix, false, static_cast<float>(1),
out, static_cast<float>(1), false);
math::MatMul<float, float>(x_matrix, false, y_matrix, false,
static_cast<float>(1), out, static_cast<float>(1),
false);
out_image->InitEmptyImage(context, commandQueue, out->dims());
framework::TensorToCLImage(out, out_image, context, commandQueue, kernel1);
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#ifdef TRANSPOSE2_OP
#include "operators/kernel/transpose2_kernel.h"
#include "operators/kernel/central-arm-func/transpose2_arm_func.h"
namespace paddle_mobile {
namespace operators {
......
......@@ -3160,7 +3160,8 @@ void Gemm::Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
#endif
// int L1 = 64 / max_threads * 1024;
int L1 = 32 / max_threads * 1024;
int L = (max_threads > 2) ? 64 : 32;
int L1 = L / max_threads * 1024;
KC = k;
zero = static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * KC));
memset(static_cast<void *>(zero), 0, sizeof(float) * KC);
......
......@@ -213,8 +213,6 @@ if(NOT FOUND_MATCH)
set(FUSION_CONVADD_OP ON)
set(FUSION_CONVADDPRELU_OP ON)
set(FUSION_CONVADDRELU_OP ON)
# set(FUSION_CONVADDRELU_INT8_OP ON)
# set(FUSION_FC_INT8_OP ON)
set(FUSION_FC_OP ON)
set(LRN_OP ON)
set(MUL_OP ON)
......@@ -316,9 +314,6 @@ endif()
if (FUSION_CONVADDRELU_OP)
add_definitions(-DFUSION_CONVADDRELU_OP)
endif()
if (FUSION_CONVADDRELU_INT8_OP)
add_definitions(-DFUSION_CONVADDRELU_INT8_OP)
endif()
if (FUSION_CONVADDPRELU_OP)
add_definitions(-DFUSION_CONVADDPRELU_OP)
endif()
......@@ -328,9 +323,6 @@ endif()
if (FUSION_FC_OP)
add_definitions(-DFUSION_FC_OP)
endif()
if(FUSION_FC_INT8_OP)
add_definitions(-DFUSION_FC_INT8_OP)
endif()
if (LRN_OP)
add_definitions(-DLRN_OP)
endif()
......@@ -490,7 +482,6 @@ if (FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
# add_definitions(-DFUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
endif()
if (TANH_OP)
add_definitions(-DTANH_OP)
endif()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册