未验证 提交 415d63f6 编写于 作者: Y Yuan Shuai 提交者: GitHub

[DOCs] Add layout, opencl docs. test=document_fix (#2897)

* add layout, opencl docs. test=document_fix

* fix link in doc. test=develop, test=document_fix
上级 be6f1fb4
# 如何增加Layout
Paddle-Lite中Place包含了Target、Layout、Precision信息,用来注册和选择模型中的具体Kernel。下面以增加Place中的layout:`ImageDefault``ImageFolder``ImageNW`为例,讲解如何增加新Layout。
根据在`lite/core/``lite/api`目录下以`NHWC`为关键词检索代码,发现需要分别在以下的文件中加入Layout内容:
1. lite/api/paddle_place.h
2. lite/api/paddle_place.cc
3. lite/api/python/pybind/pybind.cc
4. lite/core/op_registry.h
5. lite/core/op_registry.cc
## 1. lite/api/paddle_place.h
`enum class DataLayoutType`中加入对应的Layout,注意已有的Layout不能改变值,增加新Layout递增即可:
```cpp
enum class DataLayoutType : int {
kUnk = 0,
kNCHW = 1,
kNHWC = 3,
kImageDefault = 4, // for opencl image2d
kImageFolder = 5, // for opencl image2d
kImageNW = 6, // for opencl image2d
kAny = 2, // any data layout
NUM = 7, // number of fields.
};
```
## 2. lite/api/paddle_place.cc
本文件有3处修改,注意在` DataLayoutToStr`函数中加入对应Layout的字符串名,顺序为`lite/api/paddle_place.h`中枚举值的顺序:
```cpp
// 该文件第1处
const std::string& DataLayoutToStr(DataLayoutType layout) {
static const std::string datalayout2string[] = {
"unk", "NCHW", "any", "NHWC", "ImageDefault", "ImageFolder", "ImageNW"};
auto x = static_cast<int>(layout);
CHECK_LT(x, static_cast<int>(DATALAYOUT(NUM)));
return datalayout2string[x];
}
// 该文件第2处
const std::string& DataLayoutRepr(DataLayoutType layout) {
static const std::string datalayout2string[] = {"kUnk",
"kNCHW",
"kAny",
"kNHWC",
"kImageDefault",
"kImageFolder",
"kImageNW"};
auto x = static_cast<int>(layout);
CHECK_LT(x, static_cast<int>(DATALAYOUT(NUM)));
return datalayout2string[x];
}
// 该文件第3处
std::set<DataLayoutType> ExpandValidLayouts(DataLayoutType layout) {
static const std::set<DataLayoutType> valid_set({DATALAYOUT(kNCHW),
DATALAYOUT(kAny),
DATALAYOUT(kNHWC),
DATALAYOUT(kImageDefault),
DATALAYOUT(kImageFolder),
DATALAYOUT(kImageNW)});
if (layout == DATALAYOUT(kAny)) {
return valid_set;
}
return std::set<DataLayoutType>({layout});
}
```
## 3. lite/api/python/pybind/pybind.cc
```cpp
// DataLayoutType
py::enum_<DataLayoutType>(*m, "DataLayoutType")
.value("NCHW", DataLayoutType::kNCHW)
.value("NHWC", DataLayoutType::kNHWC)
.value("ImageDefault", DataLayoutType::kImageDefault)
.value("ImageFolder", DataLayoutType::kImageFolder)
.value("ImageNW", DataLayoutType::kImageNW)
.value("Any", DataLayoutType::kAny);
```
## 4. lite/core/op_registry.h
找到KernelRegister final中的`using any_kernel_registor_t =`,加入下面修改信息:
```cpp
// 找到KernelRegister final中的`using any_kernel_registor_t =`
// 加入如下内容:
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kNCHW)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kNHWC)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageFolder)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageNW)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageDefault)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageFolder)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kFloat),
DATALAYOUT(kImageNW)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kAny),
DATALAYOUT(kImageDefault)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kAny),
DATALAYOUT(kImageFolder)> *, //
KernelRegistryForTarget<TARGET(kOpenCL),
PRECISION(kAny),
DATALAYOUT(kImageNW)> *, //
```
## 5. lite/core/op_registry.cc
该文件有2处修改:
```cpp
// 该文件第1处
#define CREATE_KERNEL1(target__, precision__) \
switch (layout) { \
case DATALAYOUT(kNCHW): \
return Create<TARGET(target__), \
PRECISION(precision__), \
DATALAYOUT(kNCHW)>(op_type); \
case DATALAYOUT(kAny): \
return Create<TARGET(target__), \
PRECISION(precision__), \
DATALAYOUT(kAny)>(op_type); \
case DATALAYOUT(kNHWC): \
return Create<TARGET(target__), \
PRECISION(precision__), \
DATALAYOUT(kNHWC)>(op_type); \
case DATALAYOUT(kImageDefault): \
return Create<TARGET(target__), \
PRECISION(precision__), \
DATALAYOUT(kImageDefault)>(op_type); \
case DATALAYOUT(kImageFolder): \
return Create<TARGET(target__), \
PRECISION(precision__), \
DATALAYOUT(kImageFolder)>(op_type); \
case DATALAYOUT(kImageNW): \
return Create<TARGET(target__), \
PRECISION(precision__), \
DATALAYOUT(kImageNW)>(op_type); \
default: \
LOG(FATAL) << "unsupported kernel layout " << DataLayoutToStr(layout); \
}
// 该文件第2处
// 找到文件中的下面的函数
KernelRegistry::KernelRegistry()
: registries_(static_cast<int>(TARGET(NUM)) *
static_cast<int>(PRECISION(NUM)) *
static_cast<int>(DATALAYOUT(NUM)))
// 在该函数中加入新增Layout的下面内容
INIT_FOR(kOpenCL, kFP16, kNCHW);
INIT_FOR(kOpenCL, kFP16, kNHWC);
INIT_FOR(kOpenCL, kFP16, kImageDefault);
INIT_FOR(kOpenCL, kFP16, kImageFolder);
INIT_FOR(kOpenCL, kFP16, kImageNW);
INIT_FOR(kOpenCL, kFloat, kImageDefault);
INIT_FOR(kOpenCL, kFloat, kImageFolder);
INIT_FOR(kOpenCL, kFloat, kImageNW);
INIT_FOR(kOpenCL, kAny, kImageDefault);
INIT_FOR(kOpenCL, kAny, kImageFolder);
INIT_FOR(kOpenCL, kAny, kImageNW);
```
......@@ -37,6 +37,7 @@ Welcome to Paddle-Lite's documentation!
user_guides/model_optimize_tool
user_guides/library_tailoring
user_guides/cuda
user_guides/opencl
.. toctree::
:maxdepth: 1
......@@ -44,6 +45,7 @@ Welcome to Paddle-Lite's documentation!
advanced_user_guides/support_operation_list
advanced_user_guides/add_operation
advanced_user_guides/add_layout
advanced_user_guides/model_quantization
advanced_user_guides/add_new_pass
advanced_user_guides/x86
......
# Lite基于OpenCL的ARM GPU预测
Lite支持在Android系统上运行基于OpenCL的程序,目前支持Ubuntu环境下armv8、armv7的交叉编译。
## 编译
### 编译环境
1. Docker 容器环境;
2. Linux(推荐 Ubuntu 16.04)环境。
详见 **源码编译指南-环境准备** 章节。
### 编译选项
|参数|介绍|值|
|--------|--------|--------|
|--arm_os|代表目标操作系统|目前仅支持且默认为`android`|
|--arm_abi|代表体系结构类型,支持armv8和armv7|默认为`armv8`即arm64-v8a;`armv7`即armeabi-v7a|
|--arm_lang|代表编译目标文件所使用的编译器|默认为gcc,支持 gcc和clang两种|
### 编译Paddle-Lite OpenCL库范例
注:以android-armv8-opencl的目标、Docker容器的编译开发环境为例,CMake3.10,android-ndk-r17c位于`/opt/`目录下。
```bash
# 假设当前位于处于Lite源码根目录下
# 导入NDK_ROOT变量,注意检查您的安装目录若与本示例不同
export NDK_ROOT=/opt/android-ndk-r17c
# 删除上一次CMake自动生成的.h文件
rm ./lite/api/paddle_use_kernels.h
rm ./lite/api/paddle_use_ops.h
# 根据指定编译参数编译
./lite/tools/ci_build.sh \
--arm_os=android \
--arm_abi=armv8 \
--arm_lang=gcc \
build_test_arm_opencl
```
编译产物位于`build.lite.android.armv8.gcc.opencl`下的`inference_lite_lib.android.armv8.opencl`文件夹内,这里仅罗列关键产物:
- `cxx`:该目录是编译目标的C++的头文件和库文件;
- `demo`:该目录包含了两个demo,用来调用使用`libpaddle_api_full_bundled.a``libpaddle_api_light_bundled.a`,分别对应`mobile_full``mobile_light`文件夹。编译对应的demo仅需在`mobile_full``mobile_light`
- `mobile_full`:使用cxx config,可直接加载fluid模型,若使用OpenCL需要在`mobilenetv1_full_api.cc`代码里开启`DEMO_USE_OPENCL`的宏,详细见代码注释;
- `mobile_light`:使用mobile config,只能加载`model_optimize_tool`优化过的模型;
- `opencl`:该目录存放opencl实现的相关kernel。
```bash
.
|-- cxx
| |-- include
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib
| |-- libpaddle_api_full_bundled.a
| |-- libpaddle_api_light_bundled.a
| |-- libpaddle_full_api_shared.so
| `-- libpaddle_light_api_shared.so
|-- demo
| `-- cxx
| |-- Makefile.def
| |-- README.md
| |-- include
| | |-- paddle_api.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| |-- mobile_full
| | |-- Makefile
| | `-- mobilenetv1_full_api.cc
| `-- mobile_light
| |-- Makefile
| `-- mobilenetv1_light_api.cc
`-- opencl
`-- cl_kernel
|-- buffer
| |-- depthwise_conv2d_kernel.cl
| |-- elementwise_add_kernel.cl
| |-- fc_kernel.cl
| |-- im2col_kernel.cl
| |-- layout_kernel.cl
| |-- mat_mul_kernel.cl
| |-- pool_kernel.cl
| `-- relu_kernel.cl
|-- cl_common.h
`-- image
|-- channel_add_kernel.cl
|-- elementwise_add_kernel.cl
|-- pool_kernel.cl
`-- relu_kernel.cl
```
调用`libpaddle_api_full_bundled.a``libpaddle_api_light_bundled.a`见下一部分运行示例。
## 运行示例
下面以android、ARMv8、gcc的环境为例,介绍3个示例,分别如何在手机上执行基于OpenCL的ARM GPU推理过程。
**注意:** 以下命令均在Lite源码根目录下运行。在3个示例前,下面这段命令都先要执行用来准备环境:
```bash
# 在/data/local/tmp目录下创建OpenCL文件目录
adb shell mkdir -p /data/local/tmp/opencl
adb shell mkdir -p /data/local/tmp/opencl/cl_kernel/buffer
adb shell mkdir -p /data/local/tmp/opencl/cl_kernel/image
# 将OpenCL的kernels文件推送到/data/local/tmp/opencl目录下
adb push lite/backends/opencl/cl_kernel/cl_common.h /data/local/tmp/opencl/cl_kernel/
adb push lite/backends/opencl/cl_kernel/buffer/* /data/local/tmp/opencl/cl_kernel/buffer/
adb push lite/backends/opencl/cl_kernel/image/* /data/local/tmp/opencl/cl_kernel/image/
```
### 运行示例1: 编译产物demo示例
```bash
######################################################################
# 编译mobile_full的demo #
######################################################################
# 步骤: #
# 0.确保编译Paddle-Lite时编译了OpenCL; #
# 1.编辑`mobilenetv1_full_api.cc`代码, 开启`DEMO_USE_OPENCL`的宏; #
# 2.在产物目录`demo/cxx/mobile_full`下编译`mobile_full`的demo; #
# 3.上传demo, 模型, opencl kernel文件到手机; #
# 4.运行demo得到预期结果. #
######################################################################
adb shell mkdir /data/local/tmp/opencl/mobilenet_v1
chmod +x ./build.lite.android.armv8.gcc.opencl/inference_lite_lib.android.armv8.opencl/demo/cxx/mobile_full/mobilenetv1_full_api
adb push ./build.lite.android.armv8.gcc.opencl/inference_lite_lib.android.armv8.opencl/demo/cxx/mobile_full/mobilenetv1_full_api /data/local/tmp/opencl/
adb push ./build.lite.android.armv8.gcc.opencl/install/mobilenet_v1/* /data/local/tmp/opencl/mobilenet_v1
# use mobile_full run mobilenet_v1
# `GLOG_v` is log level
adb shell "export GLOG_v=0; \
/data/local/tmp/opencl/mobilenetv1_full_api \
--model_dir=/data/local/tmp/opencl/mobilenet_v1 \
--optimized_model_dir=/data/local/tmp/opencl/full_api_opt_model"
######################################################################
# 编译mobile_light的demo #
######################################################################
# 步骤: #
# 0.确保编译Paddle-Lite时编译了OpenCL; #
# 1.编译model_optimize_tool并对模型优化, `targets`参数为`opencl`; #
# 2.在产物目录`demo/cxx/mobile_light`下编译`mobile_light`的demo; #
# 3.上传demo, 模型, opencl kernel文件到手机; #
# 4.运行demo得到预期结果. #
######################################################################
# use model_optimize_tool to optimize model
./build.model_optimize_tool/lite/api/model_optimize_tool \
--model_dir=./build.lite.android.armv8.gcc.opencl/install/mobilenet_v1/ \
--optimize_out_type=naive_buffer \
--optimize_out=./build.lite.android.armv8.gcc.opencl/install/mobilenet_v1/ \
--valid_targets=opencl
adb shell mkdir /data/local/tmp/opencl/mobilenet_v1
chmod +x ./build.lite.android.armv8.gcc.opencl/inference_lite_lib.android.armv8.opencl/demo/cxx/mobile_light/mobilenetv1_light_api
adb push ./build.lite.android.armv8.gcc.opencl/inference_lite_lib.android.armv8.opencl/demo/cxx/mobile_light/mobilenetv1_light_api /data/local/tmp/opencl/
adb push ./build.lite.android.armv8.gcc.opencl/install/mobilenet_v1/* /data/local/tmp/opencl/mobilenet_v1
# use mobile_light run mobilenet_v1
adb shell "export GLOG_v=5; \
/data/local/tmp/opencl/mobilenetv1_light_api \
--model_dir=/data/local/tmp/opencl/"
```
### 运行示例2: test_mobilenetv1单元测试
- **运行文件准备**
```bash
# 将mobilenet_v1的模型文件推送到/data/local/tmp/opencl目录下
adb shell mkdir -p /data/local/tmp/opencl/mobilenet_v1
adb push build.lite.android.armv8.gcc.opencl/third_party/install/mobilenet_v1/* /data/local/tmp/opencl/mobilenet_v1/
# 将OpenCL单元测试程序test_mobilenetv1,推送到/data/local/tmp/opencl目录下
adb push build.lite.android.armv8.gcc.opencl/lite/api/test_mobilenetv1 /data/local/tmp/opencl
```
- **执行OpenCL推理过程**
使用如下命令运行OpenCL程序。其中:
- `--cl_path`指定了OpenCL的kernels文件即cl\_kernel所在目录;
- `--modle_dir`指定了模型文件所在目录。
```bash
adb shell chmod +x /data/local/tmp/opencl/test_mobilenetv1
adb shell /data/local/tmp/opencl/test_mobilenetv1 \
--cl_path=/data/local/tmp/opencl \
--model_dir=/data/local/tmp/opencl/mobilenet_v1 \
--warmup=1 \
--repeats=1
```
**注意:** 因为权重参数均会在Op Kernel第一次运行时进行加载,所以第一次的执行时间会略长。一般将warmup的值设为1,repeats值设为多次。
### 运行示例3: test_layout_opencl单元测试
- **运行文件准备**
```bash
# 将OpenCL单元测试程序test_layout_opencl,推送到/data/local/tmp/opencl目录下
adb push build.lite.android.armv8.gcc.opencl/lite/kernels/opencl/test_layout_opencl /data/local/tmp/opencl/
```
OpenCL推理过程**
```bash
adb shell chmod +x /data/local/tmp/opencl/test_layout_opencl
adb shell /data/local/tmp/opencl/test_layout_opencl
```
# 如何在Code中使用
见运行示例1的demo代码:
1. [./lite/demo/cxx/mobile_light/mobilenetv1_light_api.cc](https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/lite/demo/cxx/mobile_light/mobilenetv1_light_api.cc);
2. [./lite/demo/cxx/mobile_full/mobilenetv1_full_api.cc](https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/lite/demo/cxx/mobile_full/mobilenetv1_full_api.cc).
注:这里给出的链接会跳转到线上最新develop分支的代码,很可能与您本地的代码存在差异,建议参考自己本地位于`lite/demo/cxx/`目录的代码,查看如何使用。
**NOTE:** 对OpenCL的支持还在持续开发中。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册