提交 3db2e18e 编写于 作者: E eclipsycn 提交者: GitHub

Merge pull request #321 from smilejames/develop

submit depthwise_conv_op and test
...@@ -21,13 +21,6 @@ limitations under the License. */ ...@@ -21,13 +21,6 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
int ConvOutputSize(int input_size, int filter_size, int dilation, int padding,
int stride) {
const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size;
}
template <typename Dtype, typename T> template <typename Dtype, typename T>
void ConvOp<Dtype, T>::InferShape() const { void ConvOp<Dtype, T>::InferShape() const {
// std::cout << " begin get dims: " << std::endl; // std::cout << " begin get dims: " << std::endl;
......
...@@ -44,5 +44,12 @@ class ConvOp : public framework::OperatorWithKernel<DeviceType> { ...@@ -44,5 +44,12 @@ class ConvOp : public framework::OperatorWithKernel<DeviceType> {
ConvParam param_; ConvParam param_;
}; };
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
int padding, int stride) {
const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size;
}
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/depthwise_conv_op.h"
#include <vector>
#include "framework/data_type.h"
#include "framework/op_proto_maker.h"
#include "framework/op_registry.h"
#include "operators/conv_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void DepthwiseConvOp<Dtype, T>::InferShape() const {
auto in_dims = param_.Input()->dims();
auto filter_dims = param_.Filter()->dims();
const std::vector<int> &strides = param_.Strides();
std::vector<int> paddings = param_.Paddings();
int groups = param_.Groups();
std::vector<int> dilations = param_.Dilations();
PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() &&
dilations.size() == paddings.size() &&
paddings.size() == strides.size()),
"ConvParam is not suitable");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
dilations[i], paddings[i],
strides[i]));
}
framework::DDim ddim = framework::make_ddim(output_shape);
param_.Output()->Resize(ddim);
}
template class DepthwiseConvOp<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
USE_OP(depthwise_conv2d);
REGISTER_OPERATOR(depthwise_conv2d, ops::DepthwiseConvOp);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/depthwise_conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class DepthwiseConvOp : public framework::OperatorWithKernel<DeviceType> {
public:
DepthwiseConvOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs, attrs,
scope),
param_(inputs, outputs, attrs, *scope) {}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
void RunImpl() const {
operators::DepthwiseConvKernel<DeviceType, T> kernel;
kernel.Compute(param_);
this->ClearVariables({"Filter", "Input"});
}
private:
ConvParam param_;
};
} // namespace operators
} // namespace paddle_mobile
...@@ -17,19 +17,6 @@ limitations under the License. */ ...@@ -17,19 +17,6 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides, const std::vector<int> &paddings,
const std::vector<int> &dilations) {
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
for (size_t j = 0; j < strides.size(); ++j) {
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
strides_1 = strides_1 && (strides[j] == 1);
padding_0 = padding_0 && (paddings[j] == 0);
dilation_1 = dilation_1 && (dilations[j] == 1);
}
return !(filter_1 && strides_1 && padding_0 && dilation_1);
}
template <> template <>
void ConvKernel<CPU, float>::Compute(const ConvParam &param) const { void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
LOG(kLOG_DEBUG) << param; LOG(kLOG_DEBUG) << param;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam &param) const {
LOG(kLOG_DEBUG) << param;
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor *output = param.Output();
output->mutable_data<float>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
DLOG << " compute end get Attrs " << strides[0];
const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
col_shape_vec[0] = input->dims()[1] / groups;
for (size_t j = 0; j < data_dim; ++j) {
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
}
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
DLOG << " col_shape = " << col_shape;
DLOG << " col_matrix_shape = " << col_matrix_shape;
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
DLOG << " input_shape = " << input_shape;
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
DLOG << " filter.dims() = " << filter.dims();
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
DLOG << " in_batch.dims() = " << in_batch.dims();
DLOG << " out_batch.dims() = " << out_batch.dims();
for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) {
col.ShareDataWith(in_slice);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
} else if (data_dim == 2U) {
// im2col
im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
}
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
DLOG << " out_slice " << out_slice.dims();
DLOG << " filter_slice " << filter_slice.dims();
DLOG << " col_matrix " << col_matrix.dims();
math::matmul<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
auto filter_ptr = filter_slice.data<float>();
}
}
}
template class DepthwiseConvKernel<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <vector>
#include "framework/operator.h" #include "framework/operator.h"
#include "operators/math/im2col.h" #include "operators/math/im2col.h"
#include "operators/math/math_function.h" #include "operators/math/math_function.h"
...@@ -23,12 +24,28 @@ limitations under the License. */ ...@@ -23,12 +24,28 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
using namespace framework; using framework::OpKernelBase;
template <typename DeviceType, typename T> template <typename DeviceType, typename T>
class ConvKernel : public framework::OpKernelBase<DeviceType, ConvParam> { class ConvKernel : public OpKernelBase<DeviceType, ConvParam> {
public: public:
void Compute(const ConvParam &param) const; void Compute(const ConvParam &param) const;
}; };
inline bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides,
const std::vector<int> &paddings,
const std::vector<int> &dilations) {
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
for (size_t j = 0; j < strides.size(); ++j) {
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
strides_1 = strides_1 && (strides[j] == 1);
padding_0 = padding_0 && (paddings[j] == 0);
dilation_1 = dilation_1 && (dilations[j] == 1);
}
return !(filter_1 && strides_1 && padding_0 && dilation_1);
}
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
#pragma once;
namespace paddle_mobile {
namespace operators {
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class DepthwiseConvKernel : public OpKernelBase<DeviceType, ConvParam> {
public:
void Compute(const ConvParam &param) const;
};
} // namespace operators
} // namespace paddle_mobile
...@@ -91,3 +91,7 @@ target_link_libraries(test-googlenet paddle-mobile) ...@@ -91,3 +91,7 @@ target_link_libraries(test-googlenet paddle-mobile)
# gen test # gen test
ADD_EXECUTABLE(test-sigmoid operators/test_sigmoid_op.cpp test_include.h) ADD_EXECUTABLE(test-sigmoid operators/test_sigmoid_op.cpp test_include.h)
target_link_libraries(test-sigmoid paddle-mobile) target_link_libraries(test-sigmoid paddle-mobile)
# gen test
ADD_EXECUTABLE(test-depthwise-conv-op operators/test_depthwise_conv_op.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-depthwise-conv-op paddle-mobile)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../executor_for_test.h"
#include "../test_include.h"
#include "operators/depthwise_conv_op.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
// ../models/image_classification_resnet.inference.model
auto program = loader.Load(g_mobilenet_ssd);
PADDLE_MOBILE_ENFORCE(program.originProgram != nullptr,
"program file read fail");
Executor4Test<paddle_mobile::CPU, paddle_mobile::operators::DepthwiseConvOp<
paddle_mobile::CPU, float>>
executor(program, "depthwise_conv2d");
paddle_mobile::framework::LoDTensor input;
// GetInput<float>(g_test_image_1x3x224x224, &input, {1, 3, 224, 224});
// use SetupTensor if not has local input image .
SetupTensor<float>(&input, {1, 32, 150, 150}, static_cast<float>(0),
static_cast<float>(1));
auto input_ptr = input.data<float>();
auto out_ddim = paddle_mobile::framework::make_ddim({1, 32, 150, 150});
auto output = executor.Predict(input, "batch_norm_0.tmp_3",
"depthwise_conv2d_0.tmp_0", out_ddim);
auto output_ptr = output->data<float>();
for (int j = 0; j < output->numel(); ++j) {
DLOG << " value of output: " << output_ptr[j];
}
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册