Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
3a98dabd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3a98dabd
编写于
3月 31, 2020
作者:
Z
zhangshijin
提交者:
GitHub
3月 31, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#41
from Cambricon/develop-set-input-layout
Develop set input layout
上级
97c2d205
59aaf733
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
155 addition
and
75 deletion
+155
-75
lite/api/cxx_api_impl.cc
lite/api/cxx_api_impl.cc
+6
-10
lite/api/paddle_api.cc
lite/api/paddle_api.cc
+31
-0
lite/api/paddle_api.h
lite/api/paddle_api.h
+18
-22
lite/api/python/pybind/pybind.cc
lite/api/python/pybind/pybind.cc
+6
-5
lite/core/device_info.cc
lite/core/device_info.cc
+6
-1
lite/core/device_info.h
lite/core/device_info.h
+4
-1
lite/core/mir/mlu_postprocess_pass.cc
lite/core/mir/mlu_postprocess_pass.cc
+37
-26
lite/core/mir/mlu_postprocess_pass.h
lite/core/mir/mlu_postprocess_pass.h
+1
-1
lite/kernels/mlu/bridges/utility.h
lite/kernels/mlu/bridges/utility.h
+1
-1
lite/kernels/mlu/layout_compute.cc
lite/kernels/mlu/layout_compute.cc
+21
-4
lite/kernels/mlu/layout_compute.h
lite/kernels/mlu/layout_compute.h
+24
-4
未找到文件。
lite/api/cxx_api_impl.cc
浏览文件 @
3a98dabd
...
...
@@ -36,16 +36,12 @@ void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
#endif
#ifdef LITE_WITH_MLU
Env
<
TARGET
(
kMLU
)
>::
Init
();
mlu_core_version_
=
config
.
mlu_core_version
();
mlu_core_number_
=
config
.
mlu_core_number
();
use_first_conv_
=
config
.
use_first_conv
();
mean_vec_
=
config
.
mean
();
std_vec_
=
config
.
std
();
lite
::
DeviceInfo
::
Global
().
SetMLURunMode
(
mlu_core_version_
,
mlu_core_number_
,
use_first_conv_
,
mean_vec_
,
std_vec_
);
lite
::
DeviceInfo
::
Global
().
SetMLURunMode
(
config
.
mlu_core_version
(),
config
.
mlu_core_number
(),
config
.
mlu_use_first_conv
(),
config
.
mlu_first_conv_mean
(),
config
.
mlu_first_conv_std
(),
config
.
mlu_input_layout
());
#endif // LITE_WITH_MLU
auto
places
=
config
.
valid_places
();
std
::
vector
<
std
::
string
>
passes
{};
...
...
lite/api/paddle_api.cc
浏览文件 @
3a98dabd
...
...
@@ -203,6 +203,37 @@ void ConfigBase::set_threads(int threads) {
#endif
}
void
CxxConfig
::
set_mlu_core_version
(
lite_api
::
MLUCoreVersion
core_version
)
{
mlu_core_version_
=
core_version
;
}
void
CxxConfig
::
set_mlu_core_number
(
int
core_number
)
{
mlu_core_number_
=
core_number
;
}
void
CxxConfig
::
set_mlu_input_layout
(
DataLayoutType
layout
)
{
mlu_input_layout_
=
layout
;
}
void
CxxConfig
::
set_mlu_use_first_conv
(
bool
use_first_conv
)
{
mlu_use_first_conv_
=
use_first_conv
;
}
void
CxxConfig
::
set_mlu_first_conv_mean
(
const
std
::
vector
<
float
>
&
mean
)
{
mlu_first_conv_mean_
=
mean
;
}
void
CxxConfig
::
set_mlu_first_conv_std
(
const
std
::
vector
<
float
>
&
std
)
{
mlu_first_conv_std_
=
std
;
}
lite_api
::
MLUCoreVersion
CxxConfig
::
mlu_core_version
()
const
{
return
mlu_core_version_
;
}
int
CxxConfig
::
mlu_core_number
()
const
{
return
mlu_core_number_
;
}
DataLayoutType
CxxConfig
::
mlu_input_layout
()
const
{
return
mlu_input_layout_
;
}
bool
CxxConfig
::
mlu_use_first_conv
()
const
{
return
mlu_use_first_conv_
;
}
std
::
vector
<
float
>
CxxConfig
::
mlu_first_conv_mean
()
const
{
return
mlu_first_conv_mean_
;
}
std
::
vector
<
float
>
CxxConfig
::
mlu_first_conv_std
()
const
{
return
mlu_first_conv_std_
;
}
// set model data in combined format, `set_model_from_file` refers to loading
// model from file, set_model_from_buffer refers to loading model from memory
// buffer
...
...
lite/api/paddle_api.h
浏览文件 @
3a98dabd
...
...
@@ -106,11 +106,6 @@ class LITE_API PaddlePredictor {
protected:
int
threads_
{
1
};
lite_api
::
PowerMode
mode_
{
lite_api
::
LITE_POWER_NO_BIND
};
lite_api
::
MLUCoreVersion
mlu_core_version_
{
lite_api
::
MLU_270
};
int
mlu_core_number_
{
1
};
bool
use_first_conv_
{
false
};
std
::
vector
<
float
>
mean_vec_
;
std
::
vector
<
float
>
std_vec_
;
};
/// Base class for all the configs.
...
...
@@ -141,11 +136,12 @@ class LITE_API CxxConfig : public ConfigBase {
#ifdef LITE_WITH_X86
int
x86_math_library_math_threads_
=
1
;
#endif
bool
use_firstconv_
{
false
};
std
::
vector
<
float
>
mean_
=
{
0.0
f
};
std
::
vector
<
float
>
std_
=
{
1.0
f
};
lite_api
::
MLUCoreVersion
mlu_core_version_
{
lite_api
::
MLUCoreVersion
::
MLU_270
};
int
mlu_core_number_
{
1
};
DataLayoutType
mlu_input_layout_
{
DATALAYOUT
(
kNCHW
)};
bool
mlu_use_first_conv_
{
false
};
std
::
vector
<
float
>
mlu_first_conv_mean_
;
std
::
vector
<
float
>
mlu_first_conv_std_
;
public:
void
set_valid_places
(
const
std
::
vector
<
Place
>&
x
)
{
valid_places_
=
x
;
}
...
...
@@ -173,20 +169,20 @@ class LITE_API CxxConfig : public ConfigBase {
return
x86_math_library_math_threads_
;
}
#endif
void
set_use_firstconv
(
const
bool
firstconv
)
{
use_firstconv_
=
firstconv
;
}
void
set_m
ean
(
const
std
::
vector
<
float
>
mean
)
{
mean_
=
mean
;
}
void
set_
std
(
const
std
::
vector
<
float
>
std
)
{
std_
=
std
;
}
void
set_mlu_
core_version
(
lite_api
::
MLUCoreVersion
core_version
)
{
mlu_core_version_
=
core_version
;
}
void
set_mlu_
core_number
(
int
core_number
)
{
mlu_core_number_
=
core_number
;
}
bool
use_first_conv
()
const
{
return
use_firstconv_
;
}
std
::
vector
<
float
>
mean
()
const
{
return
mean_
;
}
std
::
vector
<
float
>
std
()
const
{
return
std_
;
}
lite_api
::
MLUCoreVersion
mlu_core_version
()
const
{
return
mlu_core_version_
;
}
int
mlu_core_number
()
const
{
return
mlu_core_number_
;
}
void
set_m
lu_core_version
(
lite_api
::
MLUCoreVersion
core_version
);
void
set_
mlu_core_number
(
int
core_number
);
void
set_mlu_
input_layout
(
DataLayoutType
layout
);
void
set_mlu_use_first_conv
(
bool
use_first_conv
)
;
void
set_mlu_first_conv_mean
(
const
std
::
vector
<
float
>&
mean
);
void
set_mlu_
first_conv_std
(
const
std
::
vector
<
float
>&
std
);
lite_api
::
MLUCoreVersion
mlu_core_version
()
const
;
int
mlu_core_number
()
const
;
DataLayoutType
mlu_input_layout
()
const
;
bool
mlu_use_first_conv
()
const
;
std
::
vector
<
float
>
mlu_first_conv_mean
()
const
;
std
::
vector
<
float
>
mlu_first_conv_std
()
const
;
};
/// MobileConfig is the config for the light weight predictor, it will skip
...
...
lite/api/python/pybind/pybind.cc
浏览文件 @
3a98dabd
...
...
@@ -128,11 +128,12 @@ void BindLiteCxxConfig(py::module *m) {
.
def
(
"power_mode"
,
&
CxxConfig
::
power_mode
);
#endif
#ifdef LITE_WITH_MLU
cxx_config
.
def
(
"set_use_firstconv"
,
&
CxxConfig
::
set_use_firstconv
)
.
def
(
"set_mean"
,
&
CxxConfig
::
set_mean
)
.
def
(
"set_std"
,
&
CxxConfig
::
set_std
)
.
def
(
"set_mlu_core_version"
,
&
CxxConfig
::
set_mlu_core_version
)
.
def
(
"set_mlu_core_number"
,
&
CxxConfig
::
set_mlu_core_number
);
cxx_config
.
def
(
"set_mlu_core_version"
,
&
CxxConfig
::
set_mlu_core_version
)
.
def
(
"set_mlu_core_number"
,
&
CxxConfig
::
set_mlu_core_number
)
.
def
(
"set_mlu_input_layout"
,
&
CxxConfig
::
set_mlu_input_layout
)
.
def
(
"set_mlu_use_first_conv"
,
&
CxxConfig
::
set_mlu_use_first_conv
)
.
def
(
"set_mlu_first_conv_mean"
,
&
CxxConfig
::
set_mlu_first_conv_mean
)
.
def
(
"set_mlu_first_conv_std"
,
&
CxxConfig
::
set_mlu_first_conv_std
);
#endif
}
...
...
lite/core/device_info.cc
浏览文件 @
3a98dabd
...
...
@@ -72,6 +72,7 @@ thread_local int DeviceInfo::mlu_core_number_{1};
thread_local
bool
DeviceInfo
::
use_first_conv_
{
false
};
thread_local
std
::
vector
<
float
>
DeviceInfo
::
mean_vec_
;
thread_local
std
::
vector
<
float
>
DeviceInfo
::
std_vec_
;
thread_local
DataLayoutType
DeviceInfo
::
input_layout_
{
DATALAYOUT
(
kNCHW
)};
#endif
#ifdef TARGET_IOS
...
...
@@ -1093,7 +1094,8 @@ void DeviceInfo::SetMLURunMode(lite_api::MLUCoreVersion core_version,
int
core_number
,
bool
use_first_conv
,
const
std
::
vector
<
float
>&
mean_vec
,
const
std
::
vector
<
float
>&
std_vec
)
{
const
std
::
vector
<
float
>&
std_vec
,
DataLayoutType
input_layout
)
{
switch
(
core_version
)
{
case
(
lite_api
::
MLUCoreVersion
::
MLU_220
):
mlu_core_version_
=
CNML_MLU220
;
...
...
@@ -1109,6 +1111,7 @@ void DeviceInfo::SetMLURunMode(lite_api::MLUCoreVersion core_version,
use_first_conv_
=
use_first_conv
;
mean_vec_
=
mean_vec
;
std_vec_
=
std_vec
;
input_layout_
=
input_layout
;
}
cnmlCoreVersion_t
DeviceInfo
::
MLUCoreVersion
()
{
return
mlu_core_version_
;
}
...
...
@@ -1121,6 +1124,8 @@ const std::vector<float>& DeviceInfo::MeanVec() const { return mean_vec_; }
const
std
::
vector
<
float
>&
DeviceInfo
::
StdVec
()
const
{
return
std_vec_
;
}
DataLayoutType
DeviceInfo
::
InputLayout
()
const
{
return
input_layout_
;
}
#endif // LITE_WITH_MLU
void
DeviceInfo
::
SetRunMode
(
lite_api
::
PowerMode
mode
,
int
thread_num
)
{
...
...
lite/core/device_info.h
浏览文件 @
3a98dabd
...
...
@@ -60,12 +60,14 @@ class DeviceInfo {
int
core_number
,
bool
use_first_conv
,
const
std
::
vector
<
float
>&
mean_vec
,
const
std
::
vector
<
float
>&
std_vec
);
const
std
::
vector
<
float
>&
std_vec
,
DataLayoutType
input_layout
);
cnmlCoreVersion_t
MLUCoreVersion
();
int
MLUCoreNumber
();
bool
UseFirstConv
();
const
std
::
vector
<
float
>&
MeanVec
()
const
;
const
std
::
vector
<
float
>&
StdVec
()
const
;
DataLayoutType
InputLayout
()
const
;
#endif
void
SetCache
(
int
l1size
,
int
l2size
,
int
l3size
);
void
SetArch
(
ARMArch
arch
)
{
arch_
=
arch
;
}
...
...
@@ -124,6 +126,7 @@ class DeviceInfo {
static
thread_local
bool
use_first_conv_
;
static
thread_local
std
::
vector
<
float
>
mean_vec_
;
static
thread_local
std
::
vector
<
float
>
std_vec_
;
static
thread_local
DataLayoutType
input_layout_
;
#endif
void
SetDotInfo
(
int
argc
,
...);
...
...
lite/core/mir/mlu_postprocess_pass.cc
浏览文件 @
3a98dabd
...
...
@@ -74,7 +74,9 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"Input"
);
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
DataLayoutCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
DataLayoutCompatible
(
*
out_arg_ty
,
*
cast_type
))
{
DataLayoutCompatible
(
*
out_arg_ty
,
*
cast_type
)
&&
// for first conv
PrecisionCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
))
{
is_found
=
true
;
}
}
else
if
(
op_type
==
"io_copy"
)
{
...
...
@@ -121,7 +123,7 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
cast_arg
->
AsArg
().
type
=
cast_type
;
auto
*
var
=
inst_node
->
AsStmt
().
op
()
->
scope
()
->
Var
(
cast_arg_name
);
// for CastAfter manully set the tensor's type
var
->
GetMutable
<
::
paddle
::
lite
::
Tensor
>
();
var
->
GetMutable
<
paddle
::
lite
::
Tensor
>
();
// create the stmt node
auto
*
cast_inst
=
graph
->
NewInstructNode
();
...
...
@@ -215,23 +217,23 @@ void MLUPostprocessPass::InsertBefore(SSAGraph* graph,
first_conv_nodes_
.
end
(),
head_node
->
AsArg
().
name
)
!=
first_conv_nodes_
.
end
();
//
layout
cast node
if
(
head_type
->
layout
()
!=
inst_type
->
layout
()
)
{
//
precision
cast node
if
(
head_type
->
precision
()
!=
inst_type
->
precision
()
&&
!
is_first_conv_head
)
{
cur_node
=
InsertCastBefore
(
"
layou
t"
,
name_prefix
+
"
layou
t"
,
"
cas
t"
,
name_prefix
+
"
cas
t"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
head_type
->
target
(),
head_type
->
precision
(),
inst
_type
->
layout
()));
head_type
->
target
(),
inst_type
->
precision
(),
head
_type
->
layout
()));
}
//
precision
cast node
if
(
head_type
->
precision
()
!=
inst_type
->
precision
()
&&
!
is_first_conv_head
)
{
//
layout
cast node
if
(
head_type
->
layout
()
!=
inst_type
->
layout
()
)
{
cur_node
=
InsertCastBefore
(
"
cas
t"
,
name_prefix
+
"
cas
t"
,
"
layou
t"
,
name_prefix
+
"
layou
t"
,
graph
,
cur_node
,
inst_node
,
...
...
@@ -281,7 +283,7 @@ void MLUPostprocessPass::GetSubgraphOpArgType(Node* inst_node,
// get subgraph's valid precision
const
auto
&
places
=
graph
->
valid_places
();
std
::
set
<
::
paddle
::
lite_api
::
PrecisionType
>
prec_set
;
std
::
set
<
paddle
::
lite_api
::
PrecisionType
>
prec_set
;
for
(
const
auto
&
place
:
places
)
{
if
(
place
.
target
==
TARGET
(
kMLU
))
{
prec_set
.
insert
(
place
.
precision
);
...
...
@@ -364,23 +366,23 @@ void MLUPostprocessPass::InsertAfter(SSAGraph* graph,
const
auto
name_prefix
=
tail_node
->
AsArg
().
name
+
string_format
(
"_%p"
,
inst_node
)
+
"/trans_"
;
//
layout
cast node
if
(
tail_type
->
layout
()
!=
inst_type
->
layout
())
{
//
precision
cast node
if
(
tail_type
->
precision
()
!=
inst_type
->
precision
())
{
cur_node
=
InsertCastAfter
(
"
layou
t"
,
name_prefix
+
"
layou
t"
,
"
cas
t"
,
name_prefix
+
"
cas
t"
,
graph
,
cur_node
,
inst_node
,
LiteType
::
GetTensorTy
(
tail_type
->
target
(),
tail_type
->
precision
(),
inst
_type
->
layout
()));
tail_type
->
target
(),
inst_type
->
precision
(),
tail
_type
->
layout
()));
}
//
precision
cast node
if
(
tail_type
->
precision
()
!=
inst_type
->
precision
())
{
//
layout
cast node
if
(
tail_type
->
layout
()
!=
inst_type
->
layout
())
{
cur_node
=
InsertCastAfter
(
"
cas
t"
,
name_prefix
+
"
cas
t"
,
"
layou
t"
,
name_prefix
+
"
layou
t"
,
graph
,
cur_node
,
inst_node
,
...
...
@@ -474,13 +476,20 @@ bool MLUPostprocessPass::IsFirstConvNode(Node* arg_node) {
return
false
;
}
void
MLUPostprocessPass
::
GatherFirstConvNodes
(
SSAGraph
*
graph
)
{
void
MLUPostprocessPass
::
Gather
AndModify
FirstConvNodes
(
SSAGraph
*
graph
)
{
for
(
auto
&
node
:
graph
->
mutable_nodes
())
{
if
(
!
node
.
IsStmt
())
continue
;
if
(
node
.
AsStmt
().
op_type
()
==
"feed"
)
{
for
(
auto
&
out
:
node
.
outlinks
)
{
if
(
IsFirstConvNode
(
out
))
{
first_conv_nodes_
.
insert
(
out
->
AsArg
().
name
);
// modify first conv nodes' type
const
auto
*
old_type
=
out
->
AsArg
().
type
;
out
->
AsArg
().
type
=
LiteType
::
GetTensorTy
(
old_type
->
target
(),
paddle
::
lite_api
::
PrecisionType
::
kInt8
,
old_type
->
layout
(),
old_type
->
device
());
}
}
}
...
...
@@ -504,7 +513,7 @@ void MLUPostprocessPass::ModifyLayout(SSAGraph* graph) {
out
->
AsArg
().
type
=
LiteType
::
GetTensorTy
(
old_type
->
target
(),
old_type
->
precision
(),
::
paddle
::
lite_api
::
DataLayoutType
::
kNHWC
,
paddle
::
lite_api
::
DataLayoutType
::
kNHWC
,
old_type
->
device
());
}
}
...
...
@@ -523,7 +532,7 @@ void MLUPostprocessPass::ModifyLayout(SSAGraph* graph) {
inp
->
AsArg
().
type
=
LiteType
::
GetTensorTy
(
old_type
->
target
(),
old_type
->
precision
(),
::
paddle
::
lite_api
::
DataLayoutType
::
kNHWC
,
paddle
::
lite_api
::
DataLayoutType
::
kNHWC
,
old_type
->
device
());
}
}
...
...
@@ -539,10 +548,12 @@ void MLUPostprocessPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
// 1: feed->arg_in->subgraph->... 2: ...->subgraph->arg_out->fetch;
// arg_in and arg_out are assumed to be NHWC which user should be aware of.
// Thus here we change these args' layout to NHWC
ModifyLayout
(
graph
.
get
());
if
(
lite
::
DeviceInfo
::
Global
().
InputLayout
()
==
DATALAYOUT
(
kNHWC
))
{
ModifyLayout
(
graph
.
get
());
}
if
(
lite
::
DeviceInfo
::
Global
().
UseFirstConv
())
{
GatherFirstConvNodes
(
graph
.
get
());
Gather
AndModify
FirstConvNodes
(
graph
.
get
());
}
// insert io_copy, layout and precision cast of subgraph's inputs and outputs
...
...
lite/core/mir/mlu_postprocess_pass.h
浏览文件 @
3a98dabd
...
...
@@ -109,7 +109,7 @@ class MLUPostprocessPass : public ProgramPass {
void
RecreateOp
(
Node
*
inst_node
,
SSAGraph
*
graph
);
void
GatherFirstConvNodes
(
SSAGraph
*
graph
);
void
Gather
AndModify
FirstConvNodes
(
SSAGraph
*
graph
);
bool
IsFirstConvNode
(
Node
*
arg_node
);
...
...
lite/kernels/mlu/bridges/utility.h
浏览文件 @
3a98dabd
...
...
@@ -84,7 +84,7 @@ struct FPTypeTraits<paddle::lite_api::PrecisionType::kFloat> {
template
<
>
struct
FPTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kFP16
>
{
typedef
::
paddle
::
lite
::
fluid
::
float16
T
;
typedef
paddle
::
lite
::
fluid
::
float16
T
;
};
}
// namespace mlu
...
...
lite/kernels/mlu/layout_compute.cc
浏览文件 @
3a98dabd
...
...
@@ -48,11 +48,11 @@ REGISTER_LITE_KERNEL(
def_layout_nhwc2nchw_fp16
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kF
loat
),
PRECISION
(
kF
P16
),
DATALAYOUT
(
kNHWC
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kF
loat
),
PRECISION
(
kF
P16
),
DATALAYOUT
(
kNCHW
))})
.
Finalize
();
...
...
@@ -82,10 +82,27 @@ REGISTER_LITE_KERNEL(
def_layout_nchw2nhwc_fp16
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kF
loat
),
PRECISION
(
kF
P16
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kFloat
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kNHWC
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
layout
,
kMLU
,
kInt8
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
LayoutNchwToNhwcCompute
<
PRECISION
(
kInt8
)
>
,
def_layout_nchw2nhwc_fp32_int8
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNHWC
))})
.
Finalize
();
lite/kernels/mlu/layout_compute.h
浏览文件 @
3a98dabd
...
...
@@ -29,6 +29,24 @@ namespace lite {
namespace
kernels
{
namespace
mlu
{
template
<
paddle
::
lite_api
::
PrecisionType
>
struct
FPTypeTraits
{};
template
<
>
struct
FPTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kFloat
>
{
typedef
float
T
;
};
template
<
>
struct
FPTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kFP16
>
{
typedef
paddle
::
lite
::
fluid
::
float16
T
;
};
template
<
>
struct
FPTypeTraits
<
paddle
::
lite_api
::
PrecisionType
::
kInt8
>
{
typedef
int8_t
T
;
};
template
<
lite
::
TargetType
Target
,
typename
T
>
inline
void
LayoutTransCompute
(
const
int
dim
,
const
lite
::
Context
<
Target
>&
context
,
...
...
@@ -63,7 +81,7 @@ class LayoutNchwToNhwcCompute
auto
&
param
=
this
->
template
Param
<
param_t
>();
auto
*
x
=
param
.
x
;
auto
*
out
=
param
.
y
;
out
->
template
mutable_data
<
float
>();
out
->
template
mutable_data
<
typename
FPTypeTraits
<
Precision
>
::
T
>
();
auto
x_dims
=
param
.
x
->
dims
().
size
();
auto
&
context
=
this
->
ctx_
->
template
As
<
X86Context
>();
...
...
@@ -88,7 +106,8 @@ class LayoutNchwToNhwcCompute
CHECK
(
0
)
<<
"Unsupport dim in mlu layout nchw to nhwc"
;
}
LayoutTransCompute
<
lite
::
TargetType
::
kX86
,
float
>
(
LayoutTransCompute
<
lite
::
TargetType
::
kX86
,
typename
FPTypeTraits
<
Precision
>::
T
>
(
x_dims
,
context
,
*
x
,
out
,
axis
);
if
(
x_dims
>
2
)
{
...
...
@@ -111,7 +130,7 @@ class LayoutNhwcToNchwCompute
auto
&
param
=
this
->
template
Param
<
param_t
>();
auto
*
x
=
param
.
x
;
auto
*
out
=
param
.
y
;
out
->
template
mutable_data
<
float
>();
out
->
template
mutable_data
<
typename
FPTypeTraits
<
Precision
>
::
T
>
();
auto
x_dims
=
param
.
x
->
dims
().
size
();
auto
&
context
=
this
->
ctx_
->
template
As
<
X86Context
>();
...
...
@@ -136,7 +155,8 @@ class LayoutNhwcToNchwCompute
CHECK
(
0
)
<<
"Unsupport dim in mlu layout nhwc to nchw"
;
}
LayoutTransCompute
<
lite
::
TargetType
::
kX86
,
float
>
(
LayoutTransCompute
<
lite
::
TargetType
::
kX86
,
typename
FPTypeTraits
<
Precision
>::
T
>
(
x_dims
,
context
,
*
x
,
out
,
axis
);
if
(
x_dims
>
2
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录