Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
396b4ec5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
396b4ec5
编写于
4月 03, 2020
作者:
C
chenjiaoAngel
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add boxcoder opencl kernel, test=develop
上级
902e923c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
600 addition
and
0 deletion
+600
-0
lite/backends/opencl/cl_kernel/image/box_coder_kernel.cl
lite/backends/opencl/cl_kernel/image/box_coder_kernel.cl
+152
-0
lite/kernels/opencl/box_coder_image_compute.cc
lite/kernels/opencl/box_coder_image_compute.cc
+169
-0
lite/kernels/opencl/box_coder_image_compute_test.cc
lite/kernels/opencl/box_coder_image_compute_test.cc
+279
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/box_coder_kernel.cl
0 → 100644
浏览文件 @
396b4ec5
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
decode_center_size
(
__read_only
image2d_t
prior_box_image,
__read_only
image2d_t
prior_box_var_image,
__read_only
image2d_t
target_box_image,
__write_only
image2d_t
output_image,
__private
const
int
out_C,
__private
const
int
out_H
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_nh
=
get_global_id
(
1
)
;
const
int
out_h
=
out_nh
%
out_H
;
const
int
out_n
=
1
;
const
int
prior_box_n
=
1
;
const
int
prior_box_c
=
0
;
const
int
prior_box_h
=
out_h
;
const
int
prior_box_var_n
=
1
;
const
int
prior_box_var_c
=
0
;
const
int
prior_box_var_h
=
out_h
;
const
int
target_box_n
=
1
;
const
int
target_box_c
=
out_c
;
const
int
target_box_h
=
out_h
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int2
prior_box_pos
;
int2
prior_box_var_pos
;
int2
target_box_pos
;
int2
output_pos
;
prior_box_pos.x
=
prior_box_c
*
4
;
prior_box_pos.y
=
prior_box_n
*
prior_box_h
;
prior_box_var_pos.x
=
prior_box_var_c
*
4
;
prior_box_var_pos.y
=
prior_box_var_n
*
prior_box_var_h
;
target_box_pos.x
=
target_box_c
*
4
;
target_box_pos.y
=
target_box_n
*
target_box_h
;
output_pos.x
=
out_c
*
4
;
output_pos.y
=
out_n
*
out_h
;
CL_DTYPE4
prior_box_input[4]
;
CL_DTYPE4
prior_box_var_input[4]
;
CL_DTYPE4
target_box_input[4]
;
prior_box_input[0]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
0
,
prior_box_pos.y
))
;
prior_box_input[1]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
1
,
prior_box_pos.y
))
;
prior_box_input[2]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
2
,
prior_box_pos.y
))
;
prior_box_input[3]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_image,
sampler,
(
int2
)(
prior_box_pos.x
+
3
,
prior_box_pos.y
))
;
prior_box_var_input[0]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
0
,
prior_box_var_pos.y
))
;
prior_box_var_input[1]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
1
,
prior_box_var_pos.y
))
;
prior_box_var_input[2]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
2
,
prior_box_var_pos.y
))
;
prior_box_var_input[3]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
prior_box_var_image,
sampler,
(
int2
)(
prior_box_var_pos.x
+
3
,
prior_box_var_pos.y
))
;
target_box_input[0]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
0
,
target_box_pos.y
))
;
target_box_input[1]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
1
,
target_box_pos.y
))
;
target_box_input[2]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
2
,
target_box_pos.y
))
;
target_box_input[3]
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
target_box_image,
sampler,
(
int2
)(
target_box_pos.x
+
3
,
target_box_pos.y
))
;
CL_DTYPE
prior_box_width
=
prior_box_input[2].x
-
prior_box_input[0].x
;
CL_DTYPE
prior_box_height
=
prior_box_input[3].x
-
prior_box_input[1].x
;
CL_DTYPE
prior_box_center_x
=
(
prior_box_input[2].x
+
prior_box_input[0].x
)
/
(
CL_DTYPE
)
2
;
CL_DTYPE
prior_box_center_y
=
(
prior_box_input[3].x
+
prior_box_input[1].x
)
/
(
CL_DTYPE
)
2
;
CL_DTYPE4
target_box_center_x
;
CL_DTYPE4
target_box_center_y
;
CL_DTYPE4
target_box_width
;
CL_DTYPE4
target_box_height
;
CL_DTYPE4
output[4]
;
output[0]
=
0.0f
;
output[1]
=
0.0f
;
output[2]
=
0.0f
;
output[3]
=
0.0f
;
target_box_center_x.x
=
prior_box_var_input[0].x
*
target_box_input[0].x
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.x
=
prior_box_var_input[1].x
*
target_box_input[1].x
*
prior_box_height
+
prior_box_center_y
;
target_box_width.x
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].x
)
*
prior_box_width
;
target_box_height.x
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].x
)
*
prior_box_height
;
output[0].x
=
target_box_center_x.x
-
target_box_width.x/
(
half
)
2
;
output[1].x
=
target_box_center_y.x
-
target_box_height.x/
(
half
)
2
;
output[2].x
=
target_box_center_x.x
+
target_box_width.x/
(
half
)
2
;
output[3].x
=
target_box_center_y.x
+
target_box_height.x/
(
half
)
2
;
if
(
out_C
-
out_c
*
4
>=
2
)
{
target_box_center_x.y
=
prior_box_var_input[0].x
*
target_box_input[0].y
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.y
=
prior_box_var_input[1].x
*
target_box_input[1].y
*
prior_box_height
+
prior_box_center_y
;
target_box_width.y
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].y
)
*
prior_box_width
;
target_box_height.y
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].y
)
*
prior_box_height
;
output[0].y
=
target_box_center_x.y
-
target_box_width.y/
(
half
)
2
;
output[1].y
=
target_box_center_y.y
-
target_box_height.y/
(
half
)
2
;
output[2].y
=
target_box_center_x.y
+
target_box_width.y/
(
half
)
2
;
output[3].y
=
target_box_center_y.y
+
target_box_height.y/
(
half
)
2
;
}
if
(
out_C
-
out_c
*
4
>=
3
)
{
target_box_center_x.z
=
prior_box_var_input[0].x
*
target_box_input[0].z
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.z
=
prior_box_var_input[1].x
*
target_box_input[1].z
*
prior_box_height
+
prior_box_center_y
;
target_box_width.z
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].z
)
*
prior_box_width
;
target_box_height.z
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].z
)
*
prior_box_height
;
output[0].z
=
target_box_center_x.z
-
target_box_width.z/
(
half
)
2
;
output[1].z
=
target_box_center_y.z
-
target_box_height.z/
(
half
)
2
;
output[2].z
=
target_box_center_x.z
+
target_box_width.z/
(
half
)
2
;
output[3].z
=
target_box_center_y.z
+
target_box_height.z/
(
half
)
2
;
}
if
(
out_C
-
out_c
*
4
>=
4
)
{
target_box_center_x.w
=
prior_box_var_input[0].x
*
target_box_input[0].w
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y.w
=
prior_box_var_input[1].x
*
target_box_input[1].w
*
prior_box_height
+
prior_box_center_y
;
target_box_width.w
=
exp
(
prior_box_var_input[2].x
*
target_box_input[2].w
)
*
prior_box_width
;
target_box_height.w
=
exp
(
prior_box_var_input[3].x
*
target_box_input[3].w
)
*
prior_box_height
;
output[0].w
=
target_box_center_x.w
-
target_box_width.w/
(
half
)
2
;
output[1].w
=
target_box_center_y.w
-
target_box_height.w/
(
half
)
2
;
output[2].w
=
target_box_center_x.w
+
target_box_width.w/
(
half
)
2
;
output[3].w
=
target_box_center_y.w
+
target_box_height.w/
(
half
)
2
;
}
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
output_pos.x
+
0
,
output_pos.y
)
,
output[0]
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
output_pos.x
+
1
,
output_pos.y
)
,
output[1]
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
output_pos.x
+
2
,
output_pos.y
)
,
output[2]
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
(
int2
)(
output_pos.x
+
3
,
output_pos.y
)
,
output[3]
)
;
}
lite/kernels/opencl/box_coder_image_compute.cc
0 → 100644
浏览文件 @
396b4ec5
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
BoxCoderComputeImage
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
BoxCoderParam
;
void
PrepareForRun
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
boxcoder_param_
=
param_
.
get_mutable
<
param_t
>
();
if
(
boxcoder_param_
->
code_type
==
"decode_center_size"
&&
boxcoder_param_
->
box_normalized
==
true
)
{
kernel_func_name_
=
"decode_center_size"
;
}
else
{
printf
(
"This code_type %s doesn't support
\n
"
,
boxcoder_param_
->
code_type
.
c_str
());
return
;
}
CHECK
(
context
.
cl_context
()
!=
nullptr
);
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/box_coder_kernel.cl"
,
build_options_
);
}
void
Run
()
override
{
boxcoder_param_
=
param_
.
get_mutable
<
param_t
>
();
const
auto
&
out_dims
=
boxcoder_param_
->
proposals
->
dims
();
auto
image_shape
=
InitImageDimInfoWith
(
out_dims
);
auto
*
out_buf
=
boxcoder_param_
->
proposals
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
image_shape
[
"width"
],
image_shape
[
"height"
]);
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
"boxcoder input shape: "
;
#endif
const
auto
*
input_priorbox
=
boxcoder_param_
->
prior_box
;
const
auto
*
input_priorboxvar
=
boxcoder_param_
->
prior_box_var
;
const
auto
*
input_targetbox
=
boxcoder_param_
->
target_box
;
const
auto
&
code_type
=
boxcoder_param_
->
code_type
;
if
(
code_type
==
"decode_center_size"
)
{
auto
*
prior_box_image
=
input_priorbox
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
prior_box_var_image
=
input_priorboxvar
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
target_box_image
=
input_targetbox
->
data
<
half_t
,
cl
::
Image2D
>
();
int
new_dims
[
4
]
=
{
1
,
1
,
1
,
1
};
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
i
++
)
{
new_dims
[
4
-
out_dims
.
size
()
+
i
]
=
out_dims
[
i
];
}
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
auto
default_work_size
=
DefaultWorkSize
(
out_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
image_shape
[
"height"
])}));
int
out_C
=
new_dims
[
1
];
int
out_H
=
new_dims
[
2
];
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
TargetToStr
(
boxcoder_param_
->
proposals
->
target
());
VLOG
(
4
)
<<
"output shape: "
<<
out_dims
[
0
]
<<
", "
<<
out_dims
[
1
]
<<
", "
<<
out_dims
[
2
]
<<
", "
<<
out_dims
[
3
];
VLOG
(
4
)
<<
"image_shape(w,h):"
<<
image_shape
[
"width"
]
<<
" "
<<
image_shape
[
"height"
];
VLOG
(
4
)
<<
"out_C = "
<<
out_C
;
VLOG
(
4
)
<<
"out_H = "
<<
out_H
;
VLOG
(
4
)
<<
"default_work_size = "
<<
default_work_size
[
0
]
<<
", "
<<
default_work_size
[
1
]
<<
", "
<<
default_work_size
[
2
];
#endif
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
++
,
*
prior_box_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
prior_box_var_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
target_box_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
out_buf
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_C
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_H
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
default_work_size
[
0
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
[
2
])};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_buf
,
event_
);
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
"global_work_size:[2D]:"
<<
global_work_size
[
0
]
<<
" "
<<
global_work_size
[
1
];
#endif
}
}
std
::
string
doc
()
{
return
"Boxcoder using cl::Image, kFP16"
;
}
param_t
*
boxcoder_param_
{
nullptr
};
std
::
string
kernel_func_name_
{};
std
::
string
build_options_
{
" -DCL_DTYPE_half"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
typedef
paddle
::
lite
::
kernels
::
opencl
::
BoxCoderComputeImage
BoxCoder_image
;
REGISTER_LITE_KERNEL
(
box_coder
,
kOpenCL
,
kFP16
,
kImageDefault
,
BoxCoder_image
,
ImageDefault
)
.
BindInput
(
"PriorBox"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindInput
(
"PriorBoxVar"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindInput
(
"TargetBox"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"OutputBox"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
lite/kernels/opencl/box_coder_image_compute_test.cc
0 → 100644
浏览文件 @
396b4ec5
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <memory>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-1)
namespace
paddle
{
namespace
lite
{
void
box_coder_ref
(
float
*
proposals_data
,
const
float
*
anchors_data
,
const
float
*
bbox_deltas_data
,
const
float
*
variances_data
,
int
axis
,
bool
box_normalized
,
std
::
string
code_type
,
int
row
,
int
col
)
{
if
(
code_type
==
"decode_center_size"
)
{
int
anchor_len
=
4
;
int
out_len
=
4
;
int
var_len
=
4
;
int
delta_len
=
4
;
float
normalized
=
!
box_normalized
?
1.
f
:
0
;
for
(
int64_t
row_id
=
0
;
row_id
<
row
;
++
row_id
)
{
for
(
int64_t
col_id
=
0
;
col_id
<
col
;
++
col_id
)
{
size_t
delta_offset
=
row_id
*
col
*
delta_len
+
col_id
*
delta_len
;
size_t
out_offset
=
row_id
*
col
*
out_len
+
col_id
*
out_len
;
int
prior_box_offset
=
axis
==
0
?
col_id
*
anchor_len
:
row_id
*
anchor_len
;
int
var_offset
=
axis
==
0
?
col_id
*
var_len
:
row_id
*
var_len
;
auto
anchor_data_tmp
=
anchors_data
+
prior_box_offset
;
auto
bbox_deltas_data_tmp
=
bbox_deltas_data
+
delta_offset
;
auto
proposals_data_tmp
=
proposals_data
+
out_offset
;
auto
anchor_width
=
anchor_data_tmp
[
2
]
-
anchor_data_tmp
[
0
]
+
normalized
;
auto
anchor_height
=
anchor_data_tmp
[
3
]
-
anchor_data_tmp
[
1
]
+
normalized
;
auto
anchor_center_x
=
anchor_data_tmp
[
0
]
+
0.5
*
anchor_width
;
auto
anchor_center_y
=
anchor_data_tmp
[
1
]
+
0.5
*
anchor_height
;
float
bbox_center_x
=
0
,
bbox_center_y
=
0
;
float
bbox_width
=
0
,
bbox_height
=
0
;
auto
variances_data_tmp
=
variances_data
+
var_offset
;
bbox_center_x
=
variances_data_tmp
[
0
]
*
bbox_deltas_data_tmp
[
0
]
*
anchor_width
+
anchor_center_x
;
bbox_center_y
=
variances_data_tmp
[
1
]
*
bbox_deltas_data_tmp
[
1
]
*
anchor_height
+
anchor_center_y
;
bbox_width
=
std
::
exp
(
variances_data_tmp
[
2
]
*
bbox_deltas_data_tmp
[
2
])
*
anchor_width
;
bbox_height
=
std
::
exp
(
variances_data_tmp
[
3
]
*
bbox_deltas_data_tmp
[
3
])
*
anchor_height
;
proposals_data_tmp
[
0
]
=
bbox_center_x
-
bbox_width
/
2
;
proposals_data_tmp
[
1
]
=
bbox_center_y
-
bbox_height
/
2
;
proposals_data_tmp
[
2
]
=
bbox_center_x
+
bbox_width
/
2
-
normalized
;
proposals_data_tmp
[
3
]
=
bbox_center_y
+
bbox_height
/
2
-
normalized
;
}
}
}
else
if
(
code_type
==
"encode_center_size"
)
{
LOG
(
FATAL
)
<<
"not implemented type: "
<<
code_type
;
}
else
{
LOG
(
FATAL
)
<<
"not supported type: "
<<
code_type
;
}
}
// #define BOXCODER_FP16_LOOP_TEST
// #define BOXCODER_FP16_PRINT_RESULT
TEST
(
box_coder_image2d
,
compute
)
{
#ifdef BOXCODER_FP16_LOOP_TEST
for
(
auto
n
:
{
1
,
2
,
3
,
4
})
{
for
(
auto
m
:
{
1
,
3
,
4
,
8
})
{
for
(
auto
norm
:
{
true
})
{
for
(
auto
code_type
:
{
"decode_center_size"
})
{
for
(
auto
axis
:
{
0
})
{
#else
const
int
n
=
1
;
const
int
m
=
1
;
const
bool
norm
=
true
;
const
std
::
string
code_type
=
"decode_center_size"
;
const
int
axis
=
0
;
#endif // BOXCODER_FP16_LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
m
<<
" ========"
;
LOG
(
INFO
)
<<
"======== parameters: norm = "
<<
norm
<<
", axis = "
<<
axis
<<
"code_type: "
<<
code_type
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"box_coder"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"get kernel:"
<<
kernel
->
doc
();
lite
::
Tensor
prior_box
,
prior_box_var
,
target_box
,
output_box
;
operators
::
BoxCoderParam
param
;
param
.
prior_box
=
&
prior_box
;
param
.
prior_box_var
=
&
prior_box_var
;
param
.
target_box
=
&
target_box
;
param
.
proposals
=
&
output_box
;
param
.
axis
=
axis
;
param
.
box_normalized
=
norm
;
param
.
code_type
=
code_type
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
boxcoder_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
boxcoder_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
boxcoder_context
));
const
DDim
prior_box_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
1
,
m
,
4
});
const
DDim
prior_box_var_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
1
,
m
,
4
});
const
DDim
target_box_dims
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
n
,
m
,
4
});
const
DDim
out_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
1
,
n
,
m
,
4
});
prior_box
.
Resize
(
prior_box_dims
);
prior_box_var
.
Resize
(
prior_box_var_dims
);
target_box
.
Resize
(
target_box_dims
);
output_box
.
Resize
(
out_dim
);
std
::
vector
<
float
>
prior_box_data
(
prior_box_dims
.
production
());
std
::
vector
<
float
>
prior_box_var_data
(
prior_box_var_dims
.
production
());
std
::
vector
<
float
>
target_box_data
(
target_box_dims
.
production
());
for
(
int
i
=
0
;
i
<
prior_box_dims
.
production
();
i
++
)
{
prior_box_data
[
i
]
=
i
*
1.1
/
prior_box_dims
.
production
();
}
for
(
int
i
=
0
;
i
<
prior_box_var_dims
.
production
();
i
++
)
{
prior_box_var_data
[
i
]
=
i
*
1.2
/
prior_box_var_dims
.
production
();
}
for
(
int
i
=
0
;
i
<
target_box_dims
.
production
();
i
++
)
{
target_box_data
[
i
]
=
i
*
1.3
/
target_box_dims
.
production
();
}
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
prior_box_image_shape
=
default_converter
->
InitImageDimInfoWith
(
prior_box_dims
);
LOG
(
INFO
)
<<
"prior_box_image_shape = "
<<
prior_box_image_shape
[
0
]
<<
" "
<<
prior_box_image_shape
[
1
];
std
::
vector
<
half_t
>
prior_box_image_data
(
prior_box_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
prior_box_data
.
data
(),
prior_box_image_data
.
data
(),
prior_box_dims
);
auto
*
prior_box_image
=
prior_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
prior_box_image_shape
[
0
],
prior_box_image_shape
[
1
],
prior_box_image_data
.
data
());
DDim
prior_box_var_image_shape
=
default_converter
->
InitImageDimInfoWith
(
prior_box_var_dims
);
LOG
(
INFO
)
<<
"prior_box_var_image_shape = "
<<
prior_box_var_image_shape
[
0
]
<<
" "
<<
prior_box_var_image_shape
[
1
];
std
::
vector
<
half_t
>
prior_box_var_image_data
(
prior_box_var_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
prior_box_var_data
.
data
(),
prior_box_var_image_data
.
data
(),
prior_box_var_dims
);
auto
*
prior_box_var_image
=
prior_box_var
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
prior_box_var_image_shape
[
0
],
prior_box_var_image_shape
[
1
],
prior_box_var_image_data
.
data
());
DDim
target_box_image_shape
=
default_converter
->
InitImageDimInfoWith
(
target_box_dims
);
LOG
(
INFO
)
<<
"target_box_image_shape = "
<<
target_box_image_shape
[
0
]
<<
" "
<<
target_box_image_shape
[
1
];
std
::
vector
<
half_t
>
target_box_image_data
(
target_box_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
target_box_data
.
data
(),
target_box_image_data
.
data
(),
target_box_dims
);
auto
*
target_box_image
=
target_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
target_box_image_shape
[
0
],
target_box_image_shape
[
1
],
target_box_image_data
.
data
());
DDim
out_image_shape
=
default_converter
->
InitImageDimInfoWith
(
out_dim
);
LOG
(
INFO
)
<<
"out_image_shape = "
<<
out_image_shape
[
0
]
<<
" "
<<
out_image_shape
[
1
];
auto
*
out_image
=
output_box
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
0
],
out_image_shape
[
1
]);
kernel
->
Launch
();
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
proposals
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
VLOG
(
4
)
<<
"--- Find the sync event for the target cl "
"tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the "
"target cl tensor."
;
}
lite
::
Tensor
out_ref_tensor
;
out_ref_tensor
.
Resize
(
out_dim
);
box_coder_ref
(
out_ref_tensor
.
mutable_data
<
float
>
(),
prior_box_data
.
data
(),
target_box_data
.
data
(),
prior_box_var_data
.
data
(),
axis
,
norm
,
code_type
,
target_box_dims
[
0
],
target_box_dims
[
1
]);
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
out_image_shape
.
production
()
*
4
];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
out_image_shape
[
0
],
out_image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
float
*
out_data
=
new
float
[
out_image_shape
.
production
()
*
4
];
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
,
out_image_shape
,
out_dim
);
// result
#ifdef BOXCODER_FP16_PRINT_RESULT
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
out_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
target_box_data
[
eidx
]
<<
" -> "
<<
out_data
[
eidx
]
<<
std
::
endl
;
}
#endif // BOXCODER_FP16_PRINT_RESULT
const
float
*
out_ref
=
out_ref_tensor
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
auto
abs_diff
=
abs
(
out_data
[
i
]
-
out_ref
[
i
]);
auto
relative_diff
=
COMPUTE_RELATIVE_DIFF
(
out_data
[
i
],
out_ref
[
i
]);
EXPECT_EQ
((
relative_diff
<=
FP16_MAX_DIFF
)
||
(
abs_diff
<=
FP16_MAX_DIFF
),
true
);
if
((
relative_diff
>
FP16_MAX_DIFF
)
&&
(
abs_diff
>
FP16_MAX_DIFF
))
{
LOG
(
ERROR
)
<<
"error idx:"
<<
i
<<
", in_data["
<<
i
<<
"]: "
<<
target_box_data
[
i
]
<<
", out_data["
<<
i
<<
"]: "
<<
out_data
[
i
]
<<
", out_ref["
<<
i
<<
"]: "
<<
out_ref
[
i
]
<<
", abs_diff: "
<<
abs_diff
<<
", relative_diff: "
<<
relative_diff
<<
", FP16_MAX_DIFF: "
<<
FP16_MAX_DIFF
;
}
}
#ifdef BOXCODER_FP16_LOOP_TEST
}
// axis
}
// code_type
}
// norm
}
// m
}
// n
#else
// nothing to do.
#endif
}
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
box_coder
,
kOpenCL
,
kFP16
,
kImageDefault
,
ImageDefault
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录