未验证 提交 396607ca 编写于 作者: W Wangzheee 提交者: GitHub

[ARM_Linux]Add ArmLinux C++ demo

上级 69113320
......@@ -435,3 +435,15 @@ if (LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND LITE_WITH_ARM)
endif()
endif()
endif()
if (ARM_TARGET_OS STREQUAL "armlinux")
add_custom_target(publish_inference_armlinux_cxx_demos ${TARGET}
if (NOT LITE_ON_TINY_PUBLISH)
COMMAND mkdir -p "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/arm_linux_full"
COMMAND cp -r "${CMAKE_SOURCE_DIR}/lite/demo/cxx/arm_linux_full_demo" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/arm_linux_full"
endif()
COMMAND mkdir -p "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/arm_linux_light"
COMMAND cp -r "${CMAKE_SOURCE_DIR}/lite/demo/cxx/arm_linux_light_demo" "${INFER_LITE_PUBLISH_ROOT}/demo/cxx/arm_linux_light"
)
add_dependencies(publish_inference publish_inference_armlinux_cxx_demos)
endif()
cmake_minimum_required(VERSION 2.8)
set(TARGET arm_linux_full_api)
# 1. path to Paddle-Lite lib
set(LITE_DIR "${PROJECT_SOURCE_DIR}/../../../cxx")
# 2. link Paddle-Lite directory
link_directories(${LITE_DIR}/lib)
include_directories(${LITE_DIR}/include)
# 3. compile options
add_definitions(-std=c++11 -g -O3 -pthread)
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR})
# 4.add executable output
add_executable(${TARGET} ${TARGET}.cc)
target_link_libraries(${TARGET} -lpaddle_full_api_shared)
###############################################################
# How to use one of static libaray: #
# `libpaddle_api_full_bundled.a` #
###############################################################
# Note: default use lite's shared library. #
###############################################################
# 1. Comment above line using `libpaddle_full_api_shared.so`
# 2. Undo comment below line using `libpaddle_api_full_bundled.a`
#target_link_libraries(${TARGET} ${LITE_DIR}/lib/libpaddle_api_full_bundled.a)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <iostream>
#include <vector>
#include "paddle_api.h" // NOLINT
#include "paddle_use_passes.h" // NOLINT
using namespace paddle::lite_api; // NOLINT
DEFINE_string(model_dir, "", "Model dir path.");
DEFINE_string(optimized_model_dir, "", "Optimized model dir.");
DEFINE_bool(prefer_int8_kernel, false, "Prefer to run model with int8 kernels");
int64_t ShapeProduction(const shape_t& shape) {
int64_t res = 1;
for (auto i : shape) res *= i;
return res;
}
// 0. Enable OpenCL, if needed
// Enable `DEMO_WITH_OPENCL` macro below, if user need use gpu(opencl)
// #define DEMO_WITH_OPENCL
void RunModel() {
// 1. Set CxxConfig
CxxConfig config;
config.set_model_dir(FLAGS_model_dir);
#ifdef DEMO_WITH_OPENCL
std::vector<Place> valid_places{
Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)},
Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC)},
Place{TARGET(kARM), PRECISION(kFloat)}};
#else
std::vector<Place> valid_places{Place{TARGET(kARM), PRECISION(kFloat)}};
#endif
if (FLAGS_prefer_int8_kernel) {
valid_places.insert(valid_places.begin(),
Place{TARGET(kARM), PRECISION(kInt8)});
}
config.set_valid_places(valid_places);
// 2. Create PaddlePredictor by CxxConfig
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<CxxConfig>(config);
// 3. Save the optimized model
// WARN: The `predictor->SaveOptimizedModel` method must be executed
// before the `predictor->Run` method. Because some kernels' `PrepareForRun`
// method maybe change some parameters' values.
predictor->SaveOptimizedModel(FLAGS_optimized_model_dir,
LiteModelType::kNaiveBuffer);
// 4. Prepare input data
std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
input_tensor->Resize(shape_t({1, 3, 224, 224}));
auto* data = input_tensor->mutable_data<float>();
for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
data[i] = 1;
}
// 5. Run predictor
predictor->Run();
// 6. Get output
std::unique_ptr<const Tensor> output_tensor(
std::move(predictor->GetOutput(0)));
std::cout << "Output shape " << output_tensor->shape()[1] << std::endl;
for (int i = 0; i < ShapeProduction(output_tensor->shape()); i += 100) {
std::cout << "Output[" << i << "]: " << output_tensor->data<float>()[i]
<< std::endl;
}
}
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "" || FLAGS_optimized_model_dir == "") {
std::cerr << "[ERROR] usage: " << argv[0]
<< " --model_dir=<your-model-directory>"
<< " --optimized_model_dir=<your-optmized-model-directory> "
<< " --prefer_int8_kernel=[true|false]\n";
exit(1);
}
RunModel();
return 0;
}
cmake_minimum_required(VERSION 2.8)
set(TARGET arm_linux_light_api)
# 1. path to Paddle-Lite lib
set(LITE_DIR "${PROJECT_SOURCE_DIR}/../../../cxx")
# 2. link Paddle-Lite directory
link_directories(${LITE_DIR}/lib)
include_directories(${LITE_DIR}/include)
# 3. compile options
add_definitions(-std=c++11 -g -O3 -pthread)
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR})
# 4.add executable output
add_executable(${TARGET} ${TARGET}.cc)
target_link_libraries(${TARGET} -lpaddle_light_api_shared)
###############################################################
# How to use one of static libaray: #
# `libpaddle_api_light_bundled.a` #
###############################################################
# Note: default use lite's shared library. #
###############################################################
# 1. Comment above line using `libpaddle_light_api_shared.so`
# 2. Undo comment below line using `libpaddle_api_light_bundled.a`
#target_link_libraries(${TARGET} ${LITE_DIR}/lib/libpaddle_api_light_bundled.a)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/time.h>
#include <time.h>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "paddle_api.h" // NOLINT
using namespace paddle::lite_api; // NOLINT
int64_t ShapeProduction(const shape_t& shape) {
int64_t res = 1;
for (auto i : shape) res *= i;
return res;
}
std::string ShapePrint(const shape_t& shape) {
std::string shape_str{""};
for (auto i : shape) {
shape_str += std::to_string(i) + " ";
}
return shape_str;
}
template <typename T>
double compute_mean(const T* in, const size_t length) {
double sum = 0.;
for (size_t i = 0; i < length; ++i) {
sum += in[i];
}
return sum / length;
}
template <typename T>
double compute_standard_deviation(const T* in,
const size_t length,
bool has_mean = false,
double mean = 10000) {
if (!has_mean) {
mean = compute_mean<T>(in, length);
}
double variance = 0.;
for (size_t i = 0; i < length; ++i) {
variance += pow((in[i] - mean), 2);
}
variance /= length;
return sqrt(variance);
}
inline double GetCurrentUS() {
struct timeval time;
gettimeofday(&time, NULL);
return 1e+6 * time.tv_sec + time.tv_usec;
}
void RunModel(std::string model_dir,
const shape_t& input_shape,
size_t repeats,
size_t warmup,
size_t print_output_elem,
size_t power_mode) {
// 1. Set MobileConfig
MobileConfig config;
config.set_model_from_file(model_dir);
config.set_power_mode(static_cast<paddle::lite_api::PowerMode>(power_mode));
// 2. Create PaddlePredictor by MobileConfig
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<MobileConfig>(config);
// 3. Prepare input data
std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
input_tensor->Resize(
{input_shape[0], input_shape[1], input_shape[2], input_shape[3]});
auto* data = input_tensor->mutable_data<float>();
for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
data[i] = 1;
}
// 4. Run predictor
for (size_t widx = 0; widx < warmup; ++widx) {
predictor->Run();
}
double sum_duration = 0.0; // millisecond;
double max_duration = 1e-5;
double min_duration = 1e5;
double avg_duration = -1;
for (size_t ridx = 0; ridx < repeats; ++ridx) {
auto start = GetCurrentUS();
predictor->Run();
auto duration = (GetCurrentUS() - start) / 1000.0;
sum_duration += duration;
max_duration = duration > max_duration ? duration : max_duration;
min_duration = duration < min_duration ? duration : min_duration;
std::cout << "run_idx:" << ridx + 1 << " / " << repeats << ": " << duration
<< " ms" << std::endl;
}
avg_duration = sum_duration / static_cast<float>(repeats);
std::cout << "\n======= benchmark summary =======\n"
<< "input_shape(NCHW):" << ShapePrint(input_shape) << "\n"
<< "model_dir:" << model_dir << "\n"
<< "warmup:" << warmup << "\n"
<< "repeats:" << repeats << "\n"
<< "max_duration:" << max_duration << "\n"
<< "min_duration:" << min_duration << "\n"
<< "avg_duration:" << avg_duration << "\n";
// 5. Get output
std::cout << "\n====== output summary ====== " << std::endl;
size_t output_tensor_num = predictor->GetOutputNames().size();
std::cout << "output tensor num:" << output_tensor_num << std::endl;
for (size_t tidx = 0; tidx < output_tensor_num; ++tidx) {
std::unique_ptr<const paddle::lite_api::Tensor> output_tensor =
predictor->GetOutput(tidx);
std::cout << "\n--- output tensor " << tidx << " ---" << std::endl;
auto out_shape = output_tensor->shape();
auto out_data = output_tensor->data<float>();
auto out_mean = compute_mean<float>(out_data, ShapeProduction(out_shape));
auto out_std_dev = compute_standard_deviation<float>(
out_data, ShapeProduction(out_shape), true, out_mean);
std::cout << "output shape(NCHW):" << ShapePrint(out_shape) << std::endl;
std::cout << "output tensor " << tidx
<< " elem num:" << ShapeProduction(out_shape) << std::endl;
std::cout << "output tensor " << tidx
<< " standard deviation:" << out_std_dev << std::endl;
std::cout << "output tensor " << tidx << " mean value:" << out_mean
<< std::endl;
// print output
if (print_output_elem) {
for (int i = 0; i < ShapeProduction(out_shape); ++i) {
std::cout << "out[" << tidx << "][" << i
<< "]:" << output_tensor->data<float>()[i] << std::endl;
}
}
}
}
int main(int argc, char** argv) {
shape_t input_shape{1, 3, 224, 224}; // shape_t ==> std::vector<int64_t>
int repeats = 10;
int warmup = 10;
int print_output_elem = 0;
if (argc > 2 && argc < 9) {
std::cerr << "usage: ./" << argv[0] << "\n"
<< " <naive_buffer_model_dir>\n"
<< " <input_n>\n"
<< " <input_c>\n"
<< " <input_h>\n"
<< " <input_w>\n"
<< " <repeats>\n"
<< " <warmup>\n"
<< " <print_output>" << std::endl;
return 0;
}
std::string model_dir = argv[1];
if (argc >= 9) {
input_shape[0] = atoi(argv[2]);
input_shape[1] = atoi(argv[3]);
input_shape[2] = atoi(argv[4]);
input_shape[3] = atoi(argv[5]);
repeats = atoi(argv[6]);
warmup = atoi(argv[7]);
print_output_elem = atoi(argv[8]);
}
// set arm power mode:
// 0 for big cluster, high performance
// 1 for little cluster
// 2 for all cores
// 3 for no bind
size_t power_mode = 0;
RunModel(
model_dir, input_shape, repeats, warmup, print_output_elem, power_mode);
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册