Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
37e07b54
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
37e07b54
编写于
6月 28, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
depthwiseconv3x3s1
上级
c71c2f88
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
315 addition
and
0 deletion
+315
-0
src/operators/math/depthwiseconv3x3s1p1.cpp
src/operators/math/depthwiseconv3x3s1p1.cpp
+288
-0
src/operators/math/depthwiseconv3x3s1p1.h
src/operators/math/depthwiseconv3x3s1p1.h
+27
-0
未找到文件。
src/operators/math/depthwiseconv3x3s1p1.cpp
0 → 100644
浏览文件 @
37e07b54
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/depthwiseconv3x3s1p1.h"
#include <arm_neon.h>
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
using
framework
::
Tensor
;
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
Tensor
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
.
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
.
data
<
float
>
();
const
int
h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
l
=
h
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
hxw
=
h
*
w
;
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
if
(
if_bias
)
{
vbias
=
vdupq_n_f32
(
bias_data
[
j
]);
}
int
l_mid
=
l
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
]
+
bias_data
[
j
];
output_data
[
l
-
1
]
=
w10
*
input_data
[
l
-
2
]
+
w11
*
input_data
[
l
-
1
]
+
w20
*
input_data
[
2
*
l
-
2
]
+
w21
*
input_data
[
2
*
l
-
1
]
+
bias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
=
w01
*
input_data
[(
l
-
2
)
*
l
]
+
w02
*
input_data
[(
l
-
2
)
*
l
+
1
]
+
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
]
+
bias_data
[
j
];
output_data
[
l
*
l
-
1
]
=
w00
*
input_data
[(
l
-
2
)
*
(
l
+
1
)]
+
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
]
+
bias_data
[
j
];
for
(
int
i
=
1
;
i
<
l
-
1
;
++
i
)
{
output_data
[
i
*
l
]
=
w01
*
input_data
[
i
*
l
-
l
]
+
w02
*
input_data
[
i
*
l
-
l
+
1
]
+
w11
*
input_data
[
i
*
l
]
+
w12
*
input_data
[
i
*
l
+
1
]
+
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
]
+
bias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
=
w00
*
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
w01
*
input_data
[
i
*
l
+
l
-
1
-
l
]
+
w10
*
input_data
[
i
*
l
+
l
-
1
-
1
]
+
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
]
+
bias_data
[
j
];
}
// top 1 row and bottom 1 row
const
float
*
input_tmp
=
input_data
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
l
);
const
float
*
input_tmp_end
=
input_tmp
+
(
l
-
2
)
*
l
;
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
l
);
int
c_mid
=
l_mid
;
auto
output_ptr
=
output_data
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
l
+
4
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
,
out0
);
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
in7
=
vld1q_f32
(
input_tmp_end
+
l
+
4
);
tmp0
=
vextq_f32
(
in4
,
in5
,
1
);
tmp1
=
vextq_f32
(
in4
,
in5
,
2
);
tmp2
=
vextq_f32
(
in6
,
in7
,
1
);
tmp3
=
vextq_f32
(
in6
,
in7
,
2
);
out0
=
vmulq_n_f32
(
in4
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
+
(
l
-
1
)
*
l
,
out0
);
// can optimize to each 8 stride.
input_tmp
+=
4
;
input_tmp_end
+=
4
;
output_ptr
+=
4
;
in0
=
in1
;
in2
=
in3
;
in4
=
in5
;
in6
=
in7
;
}
// top right pad
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
2
*
l
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2
,
pad1
,
1
);
tmp3
=
vextq_f32
(
in2
,
pad1
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
}
}
// bottom right pad
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
-
l
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
tmp2
=
vextq_f32
(
in6
,
pad3
,
1
);
tmp3
=
vextq_f32
(
in6
,
pad3
,
2
);
out0
=
vmulq_n_f32
(
in4
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
2
);
}
}
// mid
for
(
int
i
=
0
;
i
<
l
-
2
;
++
i
)
{
auto
output_ptr
=
output_data
+
(
i
+
1
)
*
l
+
1
;
input_tmp
=
input_data
+
i
*
l
;
auto
in0_tmp
=
vld1q_f32
(
input_tmp
);
auto
in2_tmp
=
vld1q_f32
(
input_tmp
+
l
);
auto
in4_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
);
c_mid
=
l_mid
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
auto
in1_tmp
=
vld1q_f32
(
input_tmp
+
4
);
auto
in3_tmp
=
vld1q_f32
(
input_tmp
+
l
+
4
);
auto
in5_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
+
4
);
tmp0
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
2
);
tmp2
=
vextq_f32
(
in2_tmp
,
in3_tmp
,
1
);
tmp3
=
vextq_f32
(
in2_tmp
,
in3_tmp
,
2
);
tmp4
=
vextq_f32
(
in4_tmp
,
in5_tmp
,
1
);
tmp5
=
vextq_f32
(
in4_tmp
,
in5_tmp
,
2
);
out0
=
vmulq_n_f32
(
in0_tmp
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2_tmp
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
,
out0
);
output_ptr
+=
4
;
input_tmp
+=
4
;
in0_tmp
=
in1_tmp
;
in2_tmp
=
in3_tmp
;
in4_tmp
=
in5_tmp
;
}
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
+
l
]);
tmp0
=
vextq_f32
(
in0_tmp
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2_tmp
,
pad1
,
1
);
tmp3
=
vextq_f32
(
in2_tmp
,
pad1
,
2
);
tmp4
=
vextq_f32
(
in4_tmp
,
pad2
,
1
);
tmp5
=
vextq_f32
(
in4_tmp
,
pad2
,
2
);
out0
=
vmulq_n_f32
(
in0_tmp
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2_tmp
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
}
}
}
output_data
+=
hxw
;
input_data
+=
hxw
;
filter_data_tmp
+=
9
;
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/depthwiseconv3x3s1p1.h
0 → 100644
浏览文件 @
37e07b54
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
using
framework
::
Tensor
;
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
Tensor
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录