Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
36344853
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
36344853
编写于
1月 18, 2019
作者:
H
Houjiang Chen
提交者:
GitHub
1月 18, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1394 from smilejames/develop
add gru_unit op
上级
bffccd41
7d1c7bb5
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
334 addition
and
1 deletion
+334
-1
src/common/types.cpp
src/common/types.cpp
+4
-0
src/operators/gru_unit_op.cpp
src/operators/gru_unit_op.cpp
+70
-0
src/operators/gru_unit_op.h
src/operators/gru_unit_op.h
+43
-0
src/operators/kernel/arm/activation_kernel.cpp
src/operators/kernel/arm/activation_kernel.cpp
+1
-1
src/operators/kernel/arm/gru_unit_kernel.cpp
src/operators/kernel/arm/gru_unit_kernel.cpp
+38
-0
src/operators/kernel/central-arm-func/gru_unit_arm_func.h
src/operators/kernel/central-arm-func/gru_unit_arm_func.h
+62
-0
src/operators/kernel/gru_unit_kernel.h
src/operators/kernel/gru_unit_kernel.h
+35
-0
src/operators/math/activation.h
src/operators/math/activation.h
+13
-0
src/operators/op_param.h
src/operators/op_param.h
+63
-0
tools/op.cmake
tools/op.cmake
+5
-0
未找到文件。
src/common/types.cpp
浏览文件 @
36344853
...
...
@@ -66,6 +66,7 @@ const char *G_OP_TYPE_CONV_TRANSPOSE = "conv2d_transpose";
const
char
*
G_OP_TYPE_PRELU
=
"prelu"
;
const
char
*
G_OP_TYPE_LOOKUP_TABLE
=
"lookup_table"
;
const
char
*
G_OP_TYPE_GRU
=
"gru"
;
const
char
*
G_OP_TYPE_GRU_UNIT
=
"gru_unit"
;
const
char
*
G_OP_TYPE_CRF
=
"crf_decoding"
;
const
char
*
G_OP_TYPE_BILINEAR_INTERP
=
"bilinear_interp"
;
const
char
*
G_OP_TYPE_FLATTEN
=
"flatten"
;
...
...
@@ -149,6 +150,9 @@ std::unordered_map<
{
G_OP_TYPE_GRU
,
{{
"Input"
,
"H0"
,
"Weight"
,
"Bias"
},
{
"BatchGate"
,
"BatchResetHiddenPrev"
,
"BatchHidden"
,
"Hidden"
}}},
{
G_OP_TYPE_GRU_UNIT
,
{{
"Input"
,
"HiddenPrev"
,
"Weight"
,
"Bias"
},
{
"Gate"
,
"ResetHiddenPrev"
,
"Hidden"
}}},
{
G_OP_TYPE_CRF
,
{{
"Emission"
,
"Transition"
,
"Label"
},
{
"ViterbiPath"
}}},
{
G_OP_TYPE_BILINEAR_INTERP
,
{{
"OutSize"
,
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_FLATTEN
,
{{
"X"
},
{
"Out"
}}},
...
...
src/operators/gru_unit_op.cpp
0 → 100644
浏览文件 @
36344853
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef GRU_UNIT_OP
#include "operators/gru_unit_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
void
GruUnitOp
<
DeviceType
,
T
>::
InferShape
()
const
{
auto
input_dims
=
this
->
param_
.
InputInput
()
->
dims
();
auto
hidden_prev_dims
=
this
->
param_
.
InputHiddenPrev
()
->
dims
();
auto
weight_dims
=
this
->
param_
.
InputWeight
()
->
dims
();
int
batch_size
=
input_dims
[
0
];
int
input_size
=
input_dims
[
1
];
int
frame_size
=
hidden_prev_dims
[
1
];
int
weight_height
=
weight_dims
[
0
];
int
weight_width
=
weight_dims
[
1
];
PADDLE_MOBILE_ENFORCE
(
(
input_size
==
frame_size
*
3
),
"The input_size must be 3 times of frame_size in GRUUnitOp."
);
PADDLE_MOBILE_ENFORCE
(
(
weight_height
==
frame_size
),
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
PADDLE_MOBILE_ENFORCE
(
(
weight_width
==
frame_size
*
3
),
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
if
(
this
->
param_
.
InputBias
())
{
auto
bias_dims
=
this
->
param_
.
InputBias
()
->
dims
();
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_MOBILE_ENFORCE
((
bias_height
==
1
),
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_MOBILE_ENFORCE
((
bias_width
==
frame_size
*
3
),
"The shape of Bias must be [1, frame_size * 3]."
);
}
this
->
param_
.
OutGate
()
->
Resize
({
batch_size
,
frame_size
*
3
});
this
->
param_
.
OutResetHiddenPrev
()
->
Resize
({
batch_size
,
frame_size
});
this
->
param_
.
OutHidden
()
->
Resize
({
batch_size
,
frame_size
});
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
gru_unit
,
ops
::
GruUnitOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
#ifdef PADDLE_MOBILE_CL
#endif
#endif
src/operators/gru_unit_op.h
0 → 100644
浏览文件 @
36344853
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef GRU_UNIT_OP
#pragma once
#include "framework/operator.h"
#include "operators/kernel/gru_unit_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
GruUnitOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
GruUnitParam
<
DeviceType
>
,
operators
::
GruUnitKernel
<
DeviceType
,
T
>>
{
public:
GruUnitOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
std
::
shared_ptr
<
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
GruUnitParam
<
DeviceType
>
,
operators
::
GruUnitKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
){};
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/arm/activation_kernel.cpp
浏览文件 @
36344853
...
...
@@ -37,7 +37,7 @@ struct ActivationCompute<float, Act> {
size_t
loop
=
remain
>>
4
;
remain
=
remain
&
0xF
;
#pragma omp parallel for
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
const
float
*
local_x
=
x
+
(
i
<<
4
);
float
*
local_y
=
y
+
(
i
<<
4
);
...
...
src/operators/kernel/arm/gru_unit_kernel.cpp
0 → 100644
浏览文件 @
36344853
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef GRU_UNIT_OP
#include "operators/kernel/gru_unit_kernel.h"
#include "operators/kernel/central-arm-func/gru_unit_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
GruUnitKernel
<
CPU
,
float
>::
Init
(
GruUnitParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
GruUnitKernel
<
CPU
,
float
>::
Compute
(
const
GruUnitParam
<
CPU
>
&
param
)
{
GruUnitCompute
(
param
);
}
template
class
GruUnitKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/central-arm-func/gru_unit_arm_func.h
0 → 100644
浏览文件 @
36344853
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef GRU_UNIT_OP
#pragma once
#include <operators/math/gru_compute.h>
#include "operators/kernel/activation_kernel.h"
#include "operators/math/gemm.h"
#include "operators/math/math_function.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
GruUnitCompute
(
const
GruUnitParam
<
CPU
>&
param
)
{
auto
*
input
=
param
.
InputInput
();
auto
*
hidden_prev
=
param
.
InputHiddenPrev
();
auto
*
weight
=
param
.
InputWeight
();
auto
*
bias
=
param
.
InputBias
();
auto
*
gate
=
param
.
OutGate
();
auto
*
reset_hidden_prev
=
param
.
OutResetHiddenPrev
();
auto
*
hidden
=
param
.
OutHidden
();
if
(
bias
)
{
math
::
RowwiseAdd
<
CPU
,
float
>
add_bias
;
add_bias
(
*
gate
,
*
bias
,
gate
);
}
int
batch_size
=
input
->
dims
()[
0
];
int
frame_size
=
hidden_prev
->
dims
()[
1
];
const
P
*
weight_data
=
weight
->
data
<
P
>
();
math
::
GRUMetaValue
<
P
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
P
*>
(
weight_data
);
gru_value
.
state_weight
=
const_cast
<
P
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
gru_value
.
output_value
=
hidden
->
data
<
P
>
();
gru_value
.
prev_out_value
=
hidden_prev
->
data
<
P
>
();
gru_value
.
gate_value
=
gate
->
data
<
P
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev
->
data
<
P
>
();
auto
active_node
=
math
::
GetActivationType
(
param
.
Activation
());
auto
active_gate
=
math
::
GetActivationType
(
param
.
GateActivation
());
math
::
GRUUnitFunctor
<
CPU
,
float
>::
compute
(
gru_value
,
frame_size
,
batch_size
,
active_node
,
active_gate
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/gru_unit_kernel.h
0 → 100644
浏览文件 @
36344853
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef GRU_UNIT_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
GruUnitKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
GruUnitParam
<
DeviceType
>>
{
public:
void
Compute
(
const
GruUnitParam
<
DeviceType
>&
param
);
bool
Init
(
GruUnitParam
<
DeviceType
>*
param
);
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/activation.h
浏览文件 @
36344853
...
...
@@ -45,6 +45,19 @@ inline ActivationType GetActivationType(const std::string &type) {
PADDLE_MOBILE_THROW_EXCEPTION
(
"Not support activation type."
);
}
inline
ActivationType
GetActivationType
(
const
int
type
)
{
if
(
type
==
0
)
{
return
ActivationType
::
IDENTITY
;
}
else
if
(
type
==
1
)
{
return
ActivationType
::
SIGMOID
;
}
else
if
(
type
==
2
)
{
return
ActivationType
::
TANH
;
}
else
if
(
type
==
3
)
{
return
ActivationType
::
RELU
;
}
PADDLE_MOBILE_THROW_EXCEPTION
(
"Not support activation type."
);
}
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template
<
ActivationType
Act
=
IDENTITY
>
inline
float32x4_t
vActiveq_f32
(
const
float32x4_t
&
x
)
{
...
...
src/operators/op_param.h
浏览文件 @
36344853
...
...
@@ -74,6 +74,13 @@ class OpParam {
static
T
*
InputH0From
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"H0"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputHiddenPrevFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"HiddenPrev"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputAlphaFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Alpha"
,
inputs
,
scope
);
...
...
@@ -214,6 +221,11 @@ class OpParam {
return
GetVarValue
<
T
>
(
"BatchGate"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutputGateFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Gate"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutputViterbiPathFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
...
...
@@ -225,6 +237,12 @@ class OpParam {
return
GetVarValue
<
T
>
(
"BatchResetHiddenPrev"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutputResetHiddenPrevFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"ResetHiddenPrev"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutputBatchHiddenFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
...
...
@@ -2444,6 +2462,51 @@ class GruParam : public OpParam {
};
#endif
#ifdef GRU_UNIT_OP
template
<
typename
Dtype
>
class
GruUnitParam
:
public
OpParam
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
public:
GruUnitParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_input_
=
InputFrom
<
GType
>
(
inputs
,
scope
);
input_hidden_prev_
=
InputHiddenPrevFrom
<
GType
>
(
inputs
,
scope
);
input_bias_
=
InputBiasFrom
<
GType
>
(
inputs
,
scope
);
input_weight_
=
InputWeightFrom
<
GType
>
(
inputs
,
scope
);
output_gate_
=
OutputGateFrom
<
GType
>
(
outputs
,
scope
);
output_reset_hidden_prev_
=
OutputResetHiddenPrevFrom
<
GType
>
(
outputs
,
scope
);
output_hidden_
=
OutputHiddenFrom
<
GType
>
(
outputs
,
scope
);
activation_
=
GetAttr
<
int
>
(
"activation"
,
attrs
);
gate_activation_
=
GetAttr
<
int
>
(
"gate_activation"
,
attrs
);
}
const
GType
*
InputInput
()
const
{
return
input_input_
;
}
const
GType
*
InputWeight
()
const
{
return
input_weight_
;
}
const
GType
*
InputHiddenPrev
()
const
{
return
input_hidden_prev_
;
}
const
GType
*
InputBias
()
const
{
return
input_bias_
;
}
const
int
&
Activation
()
const
{
return
activation_
;
}
const
int
&
GateActivation
()
const
{
return
gate_activation_
;
}
GType
*
OutGate
()
const
{
return
output_gate_
;
}
GType
*
OutResetHiddenPrev
()
const
{
return
output_reset_hidden_prev_
;
}
GType
*
OutHidden
()
const
{
return
output_hidden_
;
}
private:
GType
*
input_input_
;
GType
*
input_hidden_prev_
;
GType
*
input_bias_
;
GType
*
input_weight_
;
GType
*
output_gate_
;
GType
*
output_reset_hidden_prev_
;
GType
*
output_hidden_
;
int
activation_
;
int
gate_activation_
;
};
#endif
#ifdef FLATTEN_OP
template
<
typename
Dtype
>
class
FlattenParam
:
public
OpParam
{
...
...
tools/op.cmake
浏览文件 @
36344853
...
...
@@ -256,6 +256,7 @@ if(NOT FOUND_MATCH)
set
(
IM2SEQUENCE_OP ON
)
set
(
LOOKUP_OP ON
)
set
(
GRU_OP ON
)
set
(
GRU_UNIT_OP ON
)
set
(
CRF_OP ON
)
set
(
BILINEAR_INTERP_OP ON
)
set
(
SPLIT_OP ON
)
...
...
@@ -450,6 +451,10 @@ if (GRU_OP)
add_definitions
(
-DGRU_OP
)
endif
()
if
(
GRU_UNIT_OP
)
add_definitions
(
-DGRU_UNIT_OP
)
endif
()
if
(
CRF_OP
)
add_definitions
(
-DCRF_OP
)
endif
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录