Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
2da7cba9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2da7cba9
编写于
6月 23, 2020
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[OPENCL] softmax with test, test=develop
上级
500dbb62
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
432 addition
and
0 deletion
+432
-0
lite/backends/opencl/cl_kernel/image/softmax_kernel.cl
lite/backends/opencl/cl_kernel/image/softmax_kernel.cl
+58
-0
lite/kernels/opencl/CMakeLists.txt
lite/kernels/opencl/CMakeLists.txt
+4
-0
lite/kernels/opencl/softmax_image_compute.cc
lite/kernels/opencl/softmax_image_compute.cc
+157
-0
lite/kernels/opencl/softmax_image_compute_test.cc
lite/kernels/opencl/softmax_image_compute_test.cc
+213
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/softmax_kernel.cl
0 → 100644
浏览文件 @
2da7cba9
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
softmax
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
out_W
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
in_c
=
out_c
;
const
int
in_w
=
out_w
;
const
int
in_nh
=
out_nh
;
int2
input_pos
;
int2
output_pos
;
input_pos.x
=
in_c
*
out_W
+
in_w
;
input_pos.y
=
in_nh
;
output_pos.x
=
out_c
*
out_W
+
out_w
;
output_pos.y
=
out_nh
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
CL_DTYPE4
input_max
=
0.0f
;
CL_DTYPE4
input_tmp
;
for
(
int
i
=
0
; i < out_W; i++) {
input_tmp
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_c
*
out_W
+
i,
in_nh
))
;
input_max
=
max
(
input_max,
input_tmp
)
;
}
CL_DTYPE4
sum
=
(
CL_DTYPE4
)
0.0f
;
for
(
int
i
=
0
; i < out_W; i++) {
input_tmp
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
(
int2
)(
in_c
*
out_W
+
i,
in_nh
))
;
sum
+=
exp
(
input_tmp
-
input_max
)
;
}
CL_DTYPE4
input
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input_image,
sampler,
input_pos
)
;
CL_DTYPE4
output
=
exp
(
input
-
input_max
)
/
sum
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
output_pos,
output
)
;
}
lite/kernels/opencl/CMakeLists.txt
浏览文件 @
2da7cba9
...
@@ -36,6 +36,7 @@ add_kernel(pad2d_opencl OPENCL basic SRCS pad2d_image_compute.cc DEPS ${cl_kerne
...
@@ -36,6 +36,7 @@ add_kernel(pad2d_opencl OPENCL basic SRCS pad2d_image_compute.cc DEPS ${cl_kerne
add_kernel
(
box_coder_opencl OPENCL basic SRCS box_coder_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
box_coder_opencl OPENCL basic SRCS box_coder_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
pixel_shuffle_opencl OPENCL basic SRCS pixel_shuffle_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
pixel_shuffle_opencl OPENCL basic SRCS pixel_shuffle_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
expand_opencl OPENCL basic SRCS expand_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
expand_opencl OPENCL basic SRCS expand_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
softmax_opencl OPENCL basic SRCS softmax_image_compute.cc DEPS
${
cl_kernel_deps
}
)
# extra
# extra
# wait to add ...
# wait to add ...
...
@@ -82,6 +83,9 @@ lite_cc_test(test_pixel_shuffle_image_opencl SRCS pixel_shuffle_image_compute_te
...
@@ -82,6 +83,9 @@ lite_cc_test(test_pixel_shuffle_image_opencl SRCS pixel_shuffle_image_compute_te
lite_cc_test
(
test_expand_image_opencl SRCS expand_image_compute_test.cc
lite_cc_test
(
test_expand_image_opencl SRCS expand_image_compute_test.cc
DEPS expand_opencl op_registry program context
)
DEPS expand_opencl op_registry program context
)
lite_cc_test
(
test_softmax_image_opencl SRCS softmax_image_compute_test.cc
DEPS softmax_opencl op_registry program context
)
lite_cc_test
(
test_elementwise_add_image_opencl SRCS elementwise_add_image_compute_test.cc
lite_cc_test
(
test_elementwise_add_image_opencl SRCS elementwise_add_image_compute_test.cc
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
)
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context
)
lite_cc_test
(
test_elementwise_sub_image_opencl SRCS elementwise_sub_image_compute_test.cc
lite_cc_test
(
test_elementwise_sub_image_opencl SRCS elementwise_sub_image_compute_test.cc
...
...
lite/kernels/opencl/softmax_image_compute.cc
0 → 100644
浏览文件 @
2da7cba9
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
SoftmaxComputeImage2D
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
SoftmaxParam
;
std
::
string
doc
()
const
override
{
return
"Softmax using cl::Image2D, kFP16"
;
}
void
PrepareForRun
()
override
{
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/softmax_kernel.cl"
,
build_options_
,
time_stamp_
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
<<
time_stamp_
;
kernel_
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
}
void
ReInitWhenNeeded
()
override
{
VLOG
(
1
)
<<
"ReInitWhenNeeded: "
<<
kernel_func_name_
;
softmax_param_
=
param_
.
get_mutable
<
param_t
>
();
auto
x_dims
=
softmax_param_
->
x
->
dims
();
auto
out_dims
=
softmax_param_
->
output
->
dims
();
VLOG
(
1
)
<<
"x_dims: "
<<
x_dims
;
VLOG
(
1
)
<<
"out_dims: "
<<
out_dims
;
VLOG
(
1
)
<<
"axis: "
<<
softmax_param_
->
axis
;
CHECK_EQ
(
out_dims
.
size
(),
4
)
<<
"Softmax only support out_dims.size() == 4"
<<
out_dims
;
if
((
!
first_epoch_for_reinit_
&&
x_dims
!=
last_x_dims_
)
||
first_epoch_for_reinit_
)
{
last_x_dims_
=
x_dims
;
first_epoch_for_reinit_
=
false
;
// compute image shape
paddle
::
lite
::
CLImageConverterDefault
default_convertor
;
out_img_shape_
=
default_convertor
.
InitImageDimInfoWith
(
softmax_param_
->
output
->
dims
());
VLOG
(
1
)
<<
"out_img_shape_: "
<<
out_img_shape_
[
0
]
<<
" "
<<
out_img_shape_
[
1
];
// compute global work size
auto
image_width
=
out_dims
[
3
]
*
((
out_dims
[
1
]
+
3
)
/
4
);
size_t
work_size_0
=
image_width
/
out_dims
[
3
];
size_t
work_size_1
=
out_dims
[
3
];
size_t
work_size_2
=
out_dims
[
0
]
*
out_dims
[
2
];
global_work_size_
=
cl
::
NDRange
{
work_size_0
,
work_size_1
,
work_size_2
};
VLOG
(
1
)
<<
"global_work_size_: "
<<
global_work_size_
[
0
]
<<
" "
<<
global_work_size_
[
1
]
<<
" "
<<
global_work_size_
[
2
];
}
}
void
Run
()
override
{
auto
*
x_img
=
softmax_param_
->
x
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
out_img
=
softmax_param_
->
output
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_img_shape_
[
0
],
out_img_shape_
[
1
]);
auto
out_dims
=
softmax_param_
->
output
->
dims
();
int
out_w
=
out_dims
[
3
];
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
auto
kernel
=
kernel_
;
cl_int
status
;
status
=
kernel
.
setArg
(
0
,
*
x_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
1
,
*
out_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
2
,
out_w
);
CL_CHECK_FATAL
(
status
);
status
=
EnqueueNDRangeKernel
(
context
,
kernel
,
cl
::
NullRange
,
global_work_size_
,
cl
::
NullRange
,
nullptr
,
event_
);
CL_CHECK_FATAL
(
status
);
}
#ifdef LITE_WITH_PROFILE
void
SetProfileRuntimeKernelInfo
(
paddle
::
lite
::
profile
::
OpCharacter
*
ch
)
{
ch
->
kernel_func_name
=
kernel_func_name_
;
ch
->
cl_event
=
event_
;
// `event_` defined in `kernel.h`, valid after kernel::Run
}
#endif
private:
std
::
string
kernel_func_name_
{
"softmax"
};
std
::
string
build_options_
{
"-DCL_DTYPE_half"
};
std
::
string
time_stamp_
{
GetTimeStamp
()};
param_t
*
softmax_param_
{
nullptr
};
cl
::
Kernel
kernel_
;
bool
first_epoch_for_reinit_
{
true
};
DDim
last_x_dims_
;
DDim
out_img_shape_
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
(
{
static_cast
<
DDim
::
value_type
>
(
1
),
static_cast
<
DDim
::
value_type
>
(
1
)}));
cl
::
NDRange
global_work_size_
=
cl
::
NDRange
{
static_cast
<
size_t
>
(
1
),
static_cast
<
size_t
>
(
1
),
static_cast
<
size_t
>
(
1
)};
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
softmax
,
kOpenCL
,
kFP16
,
kImageDefault
,
paddle
::
lite
::
kernels
::
opencl
::
SoftmaxComputeImage2D
,
image2d
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
lite/kernels/opencl/softmax_image_compute_test.cc
0 → 100644
浏览文件 @
2da7cba9
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <random>
#include <gtest/gtest.h>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-1)
namespace
paddle
{
namespace
lite
{
template
<
typename
dtype
>
void
softmax_compute_ref
(
const
operators
::
SoftmaxParam
&
param
)
{
const
dtype
*
x_data
=
param
.
x
->
mutable_data
<
const
dtype
>
();
dtype
*
output_data
=
param
.
output
->
mutable_data
<
dtype
>
();
DDim
x_dims
=
param
.
x
->
dims
();
ASSERT_EQ
(
x_dims
.
data
(),
param
.
output
->
dims
().
data
());
auto
x_rank
=
x_dims
.
size
();
int
axis
=
param
.
axis
;
if
(
axis
<
0
)
{
axis
+=
x_rank
;
}
int
axis_size
=
x_dims
[
axis
];
int
outer_num
=
x_dims
.
Slice
(
0
,
axis
).
production
();
int
inner_num
=
x_dims
.
Slice
(
axis
+
1
,
x_rank
).
production
();
int
compute_size
=
outer_num
*
inner_num
;
for
(
int
i
=
0
;
i
<
compute_size
;
i
++
)
{
int
idx_inner
=
i
%
inner_num
;
int
idx_outer
=
(
i
/
inner_num
)
*
axis_size
;
int
start
=
idx_outer
*
inner_num
+
idx_inner
;
int
offset
;
offset
=
start
;
dtype
max_data
=
std
::
numeric_limits
<
dtype
>::
lowest
();
for
(
int
j
=
0
;
j
<
axis_size
;
j
++
)
{
max_data
=
x_data
[
offset
]
>
max_data
?
x_data
[
offset
]
:
max_data
;
offset
+=
inner_num
;
}
offset
=
start
;
dtype
sum_data
=
(
dtype
)
0
;
for
(
int
j
=
0
;
j
<
axis_size
;
j
++
)
{
output_data
[
offset
]
=
exp
(
x_data
[
offset
]
-
max_data
);
sum_data
+=
output_data
[
offset
];
offset
+=
inner_num
;
}
offset
=
start
;
for
(
int
j
=
0
;
j
<
axis_size
;
j
++
)
{
output_data
[
offset
]
/=
sum_data
;
offset
+=
inner_num
;
}
}
}
TEST
(
softmax_image2d
,
compute
)
{
#if 1
for
(
auto
n
:
{
1
,
3
})
{
for
(
auto
c
:
{
1
,
4
})
{
for
(
auto
h
:
{
5
,
1
})
{
for
(
auto
w
:
{
1
,
6
})
{
for
(
auto
axis
:
{
/*-2,*/
-
1
/*, 0, 1, 2*/
})
{
#else
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
11
,
4
})
{
for
(
auto
h
:
{
3
,
1
,
11
,
4
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
12
})
{
for
(
auto
axis
:
{
-
4
,
-
3
,
-
2
,
-
1
,
0
,
1
,
2
,
3
})
{
#endif
LOG
(
INFO
)
<<
"create kernel ..."
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"softmax"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
// prepare opencl kernel params
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"prepare to test kernel ====> "
<<
kernel
->
doc
();
LOG
(
INFO
)
<<
n
<<
c
<<
h
<<
w
;
operators
::
SoftmaxParam
param
;
lite
::
Tensor
x
;
lite
::
Tensor
output
;
operators
::
SoftmaxParam
param_ref
;
lite
::
Tensor
x_ref
;
lite
::
Tensor
output_ref
;
auto
in_dim
=
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
}));
auto
out_dim
=
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
}));
x
.
Resize
(
in_dim
);
x_ref
.
Resize
(
in_dim
);
output
.
Resize
(
out_dim
);
output_ref
.
Resize
(
out_dim
);
param
.
x
=
&
x
;
param
.
axis
=
axis
;
param
.
output
=
&
output
;
param_ref
.
x
=
&
x_ref
;
param_ref
.
axis
=
axis
;
param_ref
.
output
=
&
output_ref
;
auto
*
x_ref_data
=
x_ref
.
mutable_data
<
float
>
();
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
softmax_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
softmax_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
softmax_context
));
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
2
,
2
);
std
::
vector
<
float
>
input_v
(
n
*
c
*
h
*
w
);
int
index
=
0
;
for
(
auto
&
i
:
input_v
)
{
x_ref_data
[
index
]
=
index
;
i
=
index
++
;
}
VLOG
(
1
)
<<
"input_v ..... "
;
for
(
size_t
i
=
0
;
i
<
input_v
.
size
();
i
++
)
{
VLOG
(
10
)
<<
input_v
[
i
];
}
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
x_image_shape
=
default_converter
->
InitImageDimInfoWith
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
LOG
(
INFO
)
<<
"x_image_shape = "
<<
x_image_shape
[
0
]
<<
" "
<<
x_image_shape
[
1
];
std
::
vector
<
half_t
>
x_image_data
(
x_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
input_v
.
data
(),
x_image_data
.
data
(),
in_dim
);
auto
*
x_image
=
x
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
x_image_shape
[
0
],
x_image_shape
[
1
],
x_image_data
.
data
());
VLOG
(
1
)
<<
"x_image_data ..... "
;
for
(
size_t
i
=
0
;
i
<
x_image_data
.
size
();
i
++
)
{
VLOG
(
10
)
<<
Half2Float
(
x_image_data
[
i
]);
}
DDim
out_image_shape
=
default_converter
->
InitImageDimInfoWith
(
out_dim
);
LOG
(
INFO
)
<<
"out_image_shape = "
<<
out_image_shape
[
0
]
<<
" "
<<
out_image_shape
[
1
];
auto
*
out_image
=
output
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
0
],
out_image_shape
[
1
]);
// run
kernel
->
Launch
();
CLRuntime
::
Global
()
->
command_queue
().
finish
();
// handle output
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
out_image_shape
.
production
()
*
4
];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
out_image_shape
[
0
],
out_image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
VLOG
(
1
)
<<
"out_image_data ..... "
;
for
(
size_t
i
=
0
;
i
<
out_image_shape
.
production
()
*
4
;
i
++
)
{
VLOG
(
10
)
<<
Half2Float
(
out_image_data
[
i
]);
}
std
::
vector
<
float
>
out_data
(
out_image_shape
.
production
()
*
4
);
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
.
data
(),
out_image_shape
,
out_dim
);
VLOG
(
1
)
<<
"out_data ..... "
;
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
VLOG
(
10
)
<<
out_data
[
i
];
}
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
softmax_compute_ref
<
float
>
(
param_ref
);
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
output_ref_data
[
i
],
1e-2
);
}
}
}
}
}
}
}
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
softmax
,
kOpenCL
,
kFP16
,
kImageDefault
,
image2d
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录