提交 2cb17714 编写于 作者: L lijiancheng0614

add polygon box transform op

上级 45446351
...@@ -34,6 +34,7 @@ const char *G_OP_TYPE_FUSION_CONV_ADD = "fusion_conv_add"; ...@@ -34,6 +34,7 @@ const char *G_OP_TYPE_FUSION_CONV_ADD = "fusion_conv_add";
const char *G_OP_TYPE_LRN = "lrn"; const char *G_OP_TYPE_LRN = "lrn";
const char *G_OP_TYPE_MUL = "mul"; const char *G_OP_TYPE_MUL = "mul";
const char *G_OP_TYPE_MULTICLASS_NMS = "multiclass_nms"; const char *G_OP_TYPE_MULTICLASS_NMS = "multiclass_nms";
const char *G_OP_TYPE_POLYGON_BOX_TRANSFORM = "polygon_box_transform";
const char *G_OP_TYPE_POOL2D = "pool2d"; const char *G_OP_TYPE_POOL2D = "pool2d";
const char *G_OP_TYPE_PRIOR_BOX = "prior_box"; const char *G_OP_TYPE_PRIOR_BOX = "prior_box";
const char *G_OP_TYPE_RELU = "relu"; const char *G_OP_TYPE_RELU = "relu";
...@@ -94,6 +95,7 @@ std::unordered_map< ...@@ -94,6 +95,7 @@ std::unordered_map<
{G_OP_TYPE_FUSION_CONV_BN_ADD_RELU, {{"Input"}, {"Out"}}}, {G_OP_TYPE_FUSION_CONV_BN_ADD_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}}, {G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}}, {G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_POLYGON_BOX_TRANSFORM, {{"Input"}, {"Output"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}}, {G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
{G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}}, {G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}},
{G_OP_TYPE_DEPTHWISE_CONV, {{"Input"}, {"Output"}}}, {G_OP_TYPE_DEPTHWISE_CONV, {{"Input"}, {"Output"}}},
......
...@@ -199,6 +199,9 @@ LOAD_OP3(pool2d, CPU, MALI_GPU, FPGA); ...@@ -199,6 +199,9 @@ LOAD_OP3(pool2d, CPU, MALI_GPU, FPGA);
#ifdef MULTICLASSNMS_OP #ifdef MULTICLASSNMS_OP
LOAD_OP1(multiclass_nms, CPU); LOAD_OP1(multiclass_nms, CPU);
#endif #endif
#ifdef POLYGONBOXTRANSFORM_OP
LOAD_OP1(polygon_box_transform, CPU);
#endif
#ifdef SLICE_OP #ifdef SLICE_OP
LOAD_OP2(slice, CPU, MALI_GPU); LOAD_OP2(slice, CPU, MALI_GPU);
#endif #endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#include "operators/kernel/polygon_box_transform_kernel.h"
#include "operators/kernel/central-arm-func/polygon_box_transform_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool PolygonBoxTransformKernel<CPU, float>::Init(
PolygonBoxTransformParam<CPU> *param) {
return true;
}
template <>
void PolygonBoxTransformKernel<CPU, float>::Compute(
const PolygonBoxTransformParam<CPU> &param) const {
PolygonBoxTransformCompute<float>(param);
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#pragma once
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename P>
void PolygonBoxTransformCompute(const PolygonBoxTransformParam<CPU>& param) {
const auto* input = param.Input();
const auto& input_dims = input->dims();
const auto* input_data = input->data<float>();
auto* output = param.Output();
auto* output_data = output->mutable_data<float>();
int64_t batch_size = input_dims[0];
int64_t geo_channel = input_dims[1];
int64_t height = input_dims[2];
int64_t width = input_dims[3];
int64_t id = 0;
for (int64_t id_n = 0; id_n < batch_size * geo_channel; ++id_n) {
for (int64_t id_h = 0; id_h < height; ++id_h) {
for (int64_t id_w = 0; id_w < width; ++id_w) {
id = id_n * height * width + width * id_h + id_w;
if (id_n % 2 == 0) {
output_data[id] = id_w * 4 - input_data[id];
} else {
output_data[id] = id_h * 4 - input_data[id];
}
}
}
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class PolygonBoxTransformKernel
: public framework::OpKernelBase<DeviceType,
PolygonBoxTransformParam<DeviceType>> {
public:
void Compute(const PolygonBoxTransformParam<DeviceType>& param) const;
bool Init(PolygonBoxTransformParam<DeviceType>* param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
...@@ -985,6 +985,28 @@ class MultiClassNMSParam : public OpParam { ...@@ -985,6 +985,28 @@ class MultiClassNMSParam : public OpParam {
}; };
#endif #endif
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
PolygonBoxTransformParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_ = InputFrom<GType>(inputs, scope);
output_ = OutputFrom<GType>(outputs, scope);
}
const RType *Input() const { return input_; }
RType *Output() const { return output_; }
private:
RType *input_;
RType *output_;
};
#endif
template <typename Dtype> template <typename Dtype>
class FeedParam : public OpParam { class FeedParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType; typedef typename DtypeTensorTrait<Dtype>::gtype GType;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#include "operators/polygon_box_transform_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void PolygonBoxTransformOp<Dtype, T>::InferShape() const {
PADDLE_MOBILE_ENFORCE(this->param_.Input() != nullptr,
"Input (Input) of get_shape op should not be null.");
PADDLE_MOBILE_ENFORCE(this->param_.Output() != nullptr,
"Output (Output) of get_shape op should not be null.");
auto input_dims = this->param_.Input()->dims();
PADDLE_MOBILE_ENFORCE(input_dims.size() == 4, "input's rank must be 4.");
PADDLE_MOBILE_ENFORCE(input_dims[1] % 2 == 0,
"input's second dimension must be even.");
this->param_.Output()->Resize(input_dims);
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(polygon_box_transform, ops::PolygonBoxTransformOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/polygon_box_transform_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using paddle_mobile::framework::Tensor;
template <typename DeviceType, typename T>
class PolygonBoxTransformOp
: public framework::OperatorWithKernel<
DeviceType, PolygonBoxTransformParam<DeviceType>,
operators::PolygonBoxTransformKernel<DeviceType, T>> {
public:
PolygonBoxTransformOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, PolygonBoxTransformParam<DeviceType>,
operators::PolygonBoxTransformKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
using framework::OperatorWithKernel<
DeviceType, PolygonBoxTransformParam<DeviceType>,
operators::PolygonBoxTransformKernel<DeviceType, T>>::OperatorWithKernel;
void InferShape() const override;
protected:
};
} // namespace operators
} // namespace paddle_mobile
#endif
...@@ -200,6 +200,10 @@ if (NOT FOUND_MATCH) ...@@ -200,6 +200,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-multiclassnms-op operators/test_multiclass_nms_op.cpp test_helper.h test_include.h) ADD_EXECUTABLE(test-multiclassnms-op operators/test_multiclass_nms_op.cpp test_helper.h test_include.h)
target_link_libraries(test-multiclassnms-op paddle-mobile) target_link_libraries(test-multiclassnms-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-polygon-box-transform-op operators/test_polygon_box_transform_op.cpp test_helper.h test_include.h)
target_link_libraries(test-polygon-box-transform-op paddle-mobile)
# gen test # gen test
ADD_EXECUTABLE(test-reshape-op operators/test_reshape_op.cpp test_helper.h test_include.h) ADD_EXECUTABLE(test-reshape-op operators/test_reshape_op.cpp test_helper.h test_include.h)
target_link_libraries(test-reshape-op paddle-mobile) target_link_libraries(test-reshape-op paddle-mobile)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/polygon_box_transform_op.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype>
class TestPolygonBoxTransformOp {
public:
explicit TestPolygonBoxTransformOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
for (auto block_desc : blocks) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
for (auto op : ops) {
if (op->Type() == "polygon_box_transform") {
DLOG << " attr size: " << op->GetAttrMap().size();
DLOG << " inputs size: " << op->GetInputs().size();
DLOG << " input is : " << op->Input("Input")[0];
input_var_name = op->Input("Input")[0];
DLOG << " outputs size: " << op->GetOutputs().size();
DLOG << " output is : " << op->Output("Output")[0];
output_var_name = op->Output("Output")[0];
std::shared_ptr<operators::PolygonBoxTransformOp<Dtype, float>>
op_ptr = std::make_shared<
operators::PolygonBoxTransformOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(op_ptr);
return;
}
}
}
}
std::shared_ptr<Tensor> predict(const Tensor &t) {
auto scope = program_.scope;
Variable *input_feed_value = scope->Var(input_var_name);
auto tensor_input = input_feed_value->GetMutable<LoDTensor>();
tensor_input->ShareDataWith(t);
Variable *output = scope->Var(output_var_name);
auto *output_tensor = output->GetMutable<LoDTensor>();
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(t, 0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
string input_var_name;
string output_var_name;
void predict(const Tensor &t, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
}
};
template class TestPolygonBoxTransformOp<CPU>;
} // namespace framework
} // namespace paddle_mobile
int main() {
DLOG << "----------**********----------";
DLOG << "begin to run PolygonBoxTransform Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string(g_ocr));
paddle_mobile::framework::Tensor input;
SetupTensor<float>(&input, {1, 8, 1, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *input_ptr = input.data<float>();
for (int i = 0; i < 16; ++i) {
*(input_ptr + i) = i;
}
DLOG << "input : ";
for (int i = 0; i < input.numel(); ++i) {
DLOG << " index " << i << " : " << input_ptr[i];
}
paddle_mobile::framework::TestPolygonBoxTransformOp<paddle_mobile::CPU>
testPolygonBoxTransformOp(program);
auto output = testPolygonBoxTransformOp.predict(input);
auto *output_ptr = output->data<float>();
DLOG << "output : ";
for (int i = 0; i < output->numel(); ++i) {
DLOG << " index " << i << " : " << output_ptr[i];
}
return 0;
}
...@@ -196,6 +196,7 @@ if(NOT FOUND_MATCH) ...@@ -196,6 +196,7 @@ if(NOT FOUND_MATCH)
set(LRN_OP ON) set(LRN_OP ON)
set(MUL_OP ON) set(MUL_OP ON)
set(MULTICLASSNMS_OP ON) set(MULTICLASSNMS_OP ON)
set(POLYGONBOXTRANSFORM_OP ON)
set(POOL_OP ON) set(POOL_OP ON)
set(PRIORBOX_OP ON) set(PRIORBOX_OP ON)
set(RELU_OP ON) set(RELU_OP ON)
...@@ -237,6 +238,7 @@ endif() ...@@ -237,6 +238,7 @@ endif()
# option(LRN_OP "" ON) # option(LRN_OP "" ON)
# option(MUL_OP "" ON) # option(MUL_OP "" ON)
# option(MULTICLASSNMS_OP "" ON) # option(MULTICLASSNMS_OP "" ON)
# option(POLYGONBOXTRANSFORM_OP "" ON)
# option(POOL_OP "" ON) # option(POOL_OP "" ON)
# option(PRIORBOX_OP "" ON) # option(PRIORBOX_OP "" ON)
# option(RELU_OP "" ON) # option(RELU_OP "" ON)
...@@ -288,6 +290,9 @@ endif() ...@@ -288,6 +290,9 @@ endif()
if (MULTICLASSNMS_OP) if (MULTICLASSNMS_OP)
add_definitions(-DMULTICLASSNMS_OP) add_definitions(-DMULTICLASSNMS_OP)
endif() endif()
if (POLYGONBOXTRANSFORM_OP)
add_definitions(-DPOLYGONBOXTRANSFORM_OP)
endif()
if (POOL_OP) if (POOL_OP)
add_definitions(-DPOOL_OP) add_definitions(-DPOOL_OP)
endif() endif()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册