提交 2bc01605 编写于 作者: R Ruilong Liu 提交者: GitHub

Merge branch 'develop' into develop

cmake_minimum_required(VERSION 3.0)
project(paddle-mobile)
add_definitions(-DPADDLE_MOBILE_DEBUG="true")
add_definitions(-DPADDLE_MOBILE_DEBUG)
add_definitions(-DENABLE_EXCEPTION)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
set(CMAKE_BUILD_TYPE RelWithDebInfo)
......
#!/usr/bin/env sh
push_fn () {
MODELS_PATH="../test/models/*"
EXE_FILE="../test/build/*"
EXE_DIR="data/local/tmp/bin"
MODELS_DIR="data/local/tmp/models"
LIB_PATH="../build/release/arm-v7a/build/*"
adb push ${EXE_FILE} ${EXE_DIR}
adb push ${LIB_PATH} ${EXE_DIR}
adb push ${MODELS_PATH} ${MODELS_DIR}
echo "test files sync completed"
}
push_fn
......@@ -14,7 +14,7 @@ limitations under the License. */
#pragma once
#ifdef PADDLE_MOBILE_DEBUG
#ifdef ENABLE_EXCEPTION
#include <stdio.h>
#include <exception>
#include <sstream>
......@@ -25,7 +25,7 @@ limitations under the License. */
namespace paddle_mobile {
#ifdef PADDLE_MOBILE_DEBUG
#ifdef ENABLE_EXCEPTION
struct PaddleMobileException : public std::exception {
const std::string exception_prefix = "paddle mobile C++ Exception: \n";
std::string message;
......@@ -64,7 +64,7 @@ struct PaddleMobileException : public std::exception {
}
#else
#define PADDLE_MOBILE_THROW_EXCEPTION(...)
#define PADDLE_MOBILE_ASSERT(stat, ...)
#define PADDLE_MOBILE_ENFORCE(stat, ...)
#endif
} // namespace paddle_mobile
......@@ -95,17 +95,23 @@ static const std::string G_OP_TYPE_FETCH = "fetch";
static std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
op_input_output_key = {{G_OP_TYPE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_RELU, {{"X"}, {"Out"}}},
{G_OP_TYPE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_MUL, {{"X"}, {"Out"}}},
{G_OP_TYPE_ELEMENTWISE_ADD, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_POOL2D, {{"X"}, {"Out"}}},
{G_OP_TYPE_BATCHNORM, {{"X"}, {"Y"}}},
{G_OP_TYPE_LRN, {{"X"}, {"Out"}}},
{G_OP_TYPE_CONCAT, {{"X"}, {"Out"}}},
{G_OP_TYPE_SPLIT, {{"X"}, {"Out"}}},
{G_OP_TYPE_FEED, {{"X"}, {"Out"}}},
{G_OP_TYPE_FETCH, {{"X"}, {"Out"}}}};
op_input_output_key = {
{G_OP_TYPE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_RELU, {{"X"}, {"Out"}}},
{G_OP_TYPE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_MUL, {{"X"}, {"Out"}}},
{G_OP_TYPE_ELEMENTWISE_ADD, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_POOL2D, {{"X"}, {"Out"}}},
{G_OP_TYPE_BATCHNORM, {{"X"}, {"Y"}}},
{G_OP_TYPE_LRN, {{"X"}, {"Out"}}},
{G_OP_TYPE_CONCAT, {{"X"}, {"Out"}}},
{G_OP_TYPE_SPLIT, {{"X"}, {"Out"}}},
{G_OP_TYPE_FEED, {{"X"}, {"Out"}}},
{G_OP_TYPE_FETCH, {{"X"}, {"Out"}}},
{G_OP_TYPE_TRANSPOSE, {{"X"}, {"Out"}}},
{G_OP_TYPE_BOX_CODER,
{{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}}};
} // namespace paddle_mobile
......@@ -28,18 +28,6 @@ vector<string> OperatorBase<Dtype>::GetOutKeys() const {
return it->second.second;
}
template <typename T>
static T *GetVarValue(const string &key, const VariableNameMap &var_map,
const Scope &scope) {
auto var_vec = var_map.at(key);
if (!var_vec.empty()) {
auto var = scope.FindVar(var_vec[0]);
return var->GetMutable<T>();
} else {
return nullptr;
}
}
template <typename Dtype>
OperatorBase<Dtype>::OperatorBase(const std::string &type,
const VariableNameMap &inputs,
......@@ -60,7 +48,7 @@ void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
template <typename Dtype>
void OperatorBase<Dtype>::Run() const {
RunImpl();
#ifdef PADDLE_MOBILE_DEBUG
#if (PADDLE_MOBILE_DEBUG)
vector<string> output_keys = GetOutKeys();
for (const auto key : output_keys) {
Tensor *out_ = GetVarValue<framework::LoDTensor>(key, outputs_, *scope_);
......
......@@ -38,6 +38,19 @@ namespace paddle_mobile {
namespace framework {
using std::string;
using std::vector;
template <typename T>
static T *GetVarValue(const string &key, const VariableNameMap &var_map,
const Scope &scope) {
auto var_vec = var_map.at(key);
if (!var_vec.empty()) {
auto var = scope.FindVar(var_vec[0]);
return var->GetMutable<T>();
} else {
return nullptr;
}
}
template <typename Dtype>
class OperatorBase : PaddleMobileObject {
public:
......
......@@ -220,7 +220,7 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
}
}
}
// originProgramDesc->Description("program: ");
originProgramDesc->Description("program: ");
if (optimize) {
framework::ProgramOptimize program_optimize;
......@@ -371,31 +371,47 @@ void Executor<Dtype, P>::InitMemory() {
}
template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict(const framework::Tensor &t, int block_id) {
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
const framework::Tensor &t) {
framework::Variable *g_feed_value = program_.scope->Var("feed");
framework::Tensor *feed_tensor =
g_feed_value->GetMutable<framework::LoDTensor>();
feed_tensor->Resize(t.dims());
feed_tensor->ShareDataWith(t);
std::shared_ptr<framework::BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
to_predict_program_->Block(0);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
auto ops = ops_of_block_[*to_predict_program_->Block(0)];
auto last_op = ops.rbegin();
auto output_map = (*last_op)->Outputs();
std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
framework::LoDTensor *output_tensor =
framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
*(program_.scope));
return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
const framework::Tensor &t, int block_id) {
return Predict(t);
}
template <typename Dtype, Precision P>
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
framework::Tensor tensor(input, framework::make_ddim(dims));
Predict(tensor, 0);
framework::Variable *g_feed_value = program_.scope->Var("col");
auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();
return {};
std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
Executor<Dtype, P>::Ptype *output_ptr =
output_tensor->data<typename Executor<Dtype, P>::Ptype>();
std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
for (int j = 0; j < output_tensor->numel(); ++j) {
result_vector.push_back(output_ptr[j]);
}
return result_vector;
}
template class Executor<CPU, Precision::FP32>;
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <memory.h>
#include <map>
#include <string>
#include <vector>
......@@ -44,24 +45,25 @@ class Executor {
public:
typedef typename PrecisionTrait<P>::ptype Ptype;
Executor() = default;
Executor(const framework::Program<Dtype> p, int batch_size = 1,
bool use_optimize = true);
// std::shared_ptr<framework::Tensor> Predict(framework::Tensor &t);
std::shared_ptr<framework::Tensor> Predict(const framework::Tensor &t);
std::vector<Ptype> Predict(const std::vector<Ptype> &input,
const std::vector<int64_t> &dims);
protected:
Executor() = default;
void InitMemory();
void LoadMemory(const framework::VarDesc var_desc,
framework::LoDTensor *tensor, const std::string &file_path);
framework::Program<Dtype> program_;
int batch_size_ = 1;
std::shared_ptr<framework::ProgramDesc> to_predict_program_;
void Predict(const framework::Tensor &t, int block_id);
std::shared_ptr<framework::Tensor> Predict(const framework::Tensor &t,
int block_id);
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<framework::OperatorBase<Dtype>>>>
ops_of_block_;
......
......@@ -21,13 +21,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
int ConvOutputSize(int input_size, int filter_size, int dilation, int padding,
int stride) {
const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size;
}
template <typename Dtype, typename T>
void ConvOp<Dtype, T>::InferShape() const {
// std::cout << " begin get dims: " << std::endl;
......
......@@ -44,5 +44,12 @@ class ConvOp : public framework::OperatorWithKernel<DeviceType> {
ConvParam param_;
};
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
int padding, int stride) {
const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size;
}
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/depthwise_conv_op.h"
#include <vector>
#include "framework/data_type.h"
#include "framework/op_proto_maker.h"
#include "framework/op_registry.h"
#include "operators/conv_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void DepthwiseConvOp<Dtype, T>::InferShape() const {
auto in_dims = param_.Input()->dims();
auto filter_dims = param_.Filter()->dims();
const std::vector<int> &strides = param_.Strides();
std::vector<int> paddings = param_.Paddings();
int groups = param_.Groups();
std::vector<int> dilations = param_.Dilations();
PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() &&
dilations.size() == paddings.size() &&
paddings.size() == strides.size()),
"ConvParam is not suitable");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
dilations[i], paddings[i],
strides[i]));
}
framework::DDim ddim = framework::make_ddim(output_shape);
param_.Output()->Resize(ddim);
}
template class DepthwiseConvOp<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
USE_OP(depthwise_conv2d);
REGISTER_OPERATOR(depthwise_conv2d, ops::DepthwiseConvOp);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/depthwise_conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class DepthwiseConvOp : public framework::OperatorWithKernel<DeviceType> {
public:
DepthwiseConvOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs, attrs,
scope),
param_(inputs, outputs, attrs, *scope) {}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
void RunImpl() const {
operators::DepthwiseConvKernel<DeviceType, T> kernel;
kernel.Compute(param_);
this->ClearVariables({"Filter", "Input"});
}
private:
ConvParam param_;
};
} // namespace operators
} // namespace paddle_mobile
......@@ -17,19 +17,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides, const std::vector<int> &paddings,
const std::vector<int> &dilations) {
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
for (size_t j = 0; j < strides.size(); ++j) {
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
strides_1 = strides_1 && (strides[j] == 1);
padding_0 = padding_0 && (paddings[j] == 0);
dilation_1 = dilation_1 && (dilations[j] == 1);
}
return !(filter_1 && strides_1 && padding_0 && dilation_1);
}
template <>
void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
LOG(kLOG_DEBUG) << param;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam &param) const {
LOG(kLOG_DEBUG) << param;
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor *output = param.Output();
output->mutable_data<float>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
// DLOG << " compute end get Attrs " << strides[0];
const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
col_shape_vec[0] = input->dims()[1] / groups;
for (size_t j = 0; j < data_dim; ++j) {
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
}
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
// DLOG << " col_shape = " << col_shape;
// DLOG << " col_matrix_shape = " << col_matrix_shape;
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
// DLOG << " input_shape = " << input_shape;
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
// DLOG << " filter.dims() = " << filter.dims();
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
// DLOG << " in_batch.dims() = " << in_batch.dims();
// DLOG << " out_batch.dims() = " << out_batch.dims();
for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) {
col.ShareDataWith(in_slice);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
} else if (data_dim == 2U) {
// im2col
im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
}
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
// DLOG << " out_slice " << out_slice.dims();
// DLOG << " filter_slice " << filter_slice.dims();
// DLOG << " col_matrix " << col_matrix.dims();
math::matmul<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
auto filter_ptr = filter_slice.data<float>();
}
}
}
template class DepthwiseConvKernel<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
......@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <vector>
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
......@@ -23,12 +24,28 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
using namespace framework;
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class ConvKernel : public framework::OpKernelBase<DeviceType, ConvParam> {
class ConvKernel : public OpKernelBase<DeviceType, ConvParam> {
public:
void Compute(const ConvParam &param) const;
};
inline bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides,
const std::vector<int> &paddings,
const std::vector<int> &dilations) {
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
for (size_t j = 0; j < strides.size(); ++j) {
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
strides_1 = strides_1 && (strides[j] == 1);
padding_0 = padding_0 && (paddings[j] == 0);
dilation_1 = dilation_1 && (dilations[j] == 1);
}
return !(filter_1 && strides_1 && padding_0 && dilation_1);
}
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
#pragma once;
namespace paddle_mobile {
namespace operators {
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class DepthwiseConvKernel : public OpKernelBase<DeviceType, ConvParam> {
public:
void Compute(const ConvParam &param) const;
};
} // namespace operators
} // namespace paddle_mobile
......@@ -136,9 +136,15 @@ class SoftmaxFuntor<CPU, T> {
public:
void operator()(const framework::Tensor *X, framework::Tensor *Y) {
const DDim dDim = X->dims();
for (int i = 0; i < dDim[0]; ++i) {
framework::Tensor sub_X = X->Slice(i, i + 1);
framework::Tensor sub_Y = Y->Slice(i, i + 1);
#if __ARM_NEON
SoftmaxCacl(X, Y);
SoftmaxCacl(&sub_X, &sub_Y);
#endif
}
}
};
......
......@@ -84,10 +84,33 @@ target_link_libraries(test-gemm paddle-mobile)
ADD_EXECUTABLE(test-enforce common/test_enforce.cpp)
target_link_libraries(test-enforce paddle-mobile)
# gen test
ADD_EXECUTABLE(test-yolo net/test_yolo.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-yolo paddle-mobile)
# gen test
ADD_EXECUTABLE(test-googlenet net/test_googlenet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-googlenet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-mobilenet net/test_mobilenet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-mobilenet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-resnet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-mobilenetssd net/test_mobilenet+ssd.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-mobilenetssd paddle-mobile)
# gen test
ADD_EXECUTABLE(test-squeezenet net/test_squeezenet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-squeezenet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-sigmoid operators/test_sigmoid_op.cpp test_include.h)
target_link_libraries(test-sigmoid paddle-mobile)
# gen test
ADD_EXECUTABLE(test-depthwise-conv-op operators/test_depthwise_conv_op.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-depthwise-conv-op paddle-mobile)
......@@ -18,20 +18,17 @@ limitations under the License. */
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
// ../../../test/models/googlenet
// ../../../test/models/mobilenet
auto time1 = time();
auto program = loader.Load(g_googlenet, false);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time1) << "ms";
DLOG << "load cost :" << time_diff(time1, time2) << "ms\n";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, false);
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
auto time3 = time();
executor.Predict(input, dims);
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
DLOG << "predict cost :" << time_diff(time3, time4) << "ms\n";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto time1 = time();
auto program = loader.Load(g_mobilenet_ssd, false);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time1) << "ms";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, false);
std::vector<int64_t> dims{1, 3, 300, 300};
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {1, 3, 300, 300}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
auto time3 = time();
executor.Predict(input, dims);
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto time1 = time();
auto program = loader.Load(g_mobilenet, false);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time1) << "ms";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 2, false);
std::vector<int64_t> dims{2, 3, 224, 224};
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {2, 3, 224, 224}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
auto time3 = time();
auto vec_result = executor.Predict(input, dims);
float sum = 0;
for (const auto item : vec_result) {
sum += item;
}
DLOG << "mobilenet output sum =" << sum;
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto time1 = time();
auto program = loader.Load(g_resnet, false);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time1) << "ms";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, false);
std::vector<int64_t> dims{1, 3, 32, 32};
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {1, 3, 32, 32}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
auto time3 = time();
executor.Predict(input, dims);
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
// ../../../test/models/googlenet
// ../../../test/models/mobilenet
auto time1 = time();
auto program = loader.Load(g_squeezenet, false);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time1) << "ms";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, false);
std::vector<int64_t> dims{1, 3, 227, 227};
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {1, 3, 227, 227}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
auto time3 = time();
executor.Predict(input, dims);
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
// ../../../test/models/googlenet
// ../../../test/models/mobilenet
auto time1 = time();
auto program = loader.Load(g_yolo, false);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time1) << "ms";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, false);
std::vector<int64_t> dims{1, 3, 227, 227};
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {1, 3, 227, 227}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
auto time3 = time();
executor.Predict(input, dims);
auto time4 = time();
DLOG << "predict cost :" << time_diff(time3, time4) << "ms";
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../executor_for_test.h"
#include "../test_include.h"
#include "operators/depthwise_conv_op.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
// ../models/image_classification_resnet.inference.model
auto program = loader.Load(g_mobilenet_ssd);
PADDLE_MOBILE_ENFORCE(program.originProgram != nullptr,
"program file read fail");
Executor4Test<paddle_mobile::CPU, paddle_mobile::operators::DepthwiseConvOp<
paddle_mobile::CPU, float>>
executor(program, "depthwise_conv2d");
paddle_mobile::framework::LoDTensor input;
// GetInput<float>(g_test_image_1x3x224x224, &input, {1, 3, 224, 224});
// use SetupTensor if not has local input image .
SetupTensor<float>(&input, {1, 32, 150, 150}, static_cast<float>(0),
static_cast<float>(1));
auto input_ptr = input.data<float>();
auto out_ddim = paddle_mobile::framework::make_ddim({1, 32, 150, 150});
auto output = executor.Predict(input, "batch_norm_0.tmp_3",
"depthwise_conv2d_0.tmp_0", out_ddim);
auto output_ptr = output->data<float>();
for (int j = 0; j < output->numel(); ++j) {
DLOG << " value of output: " << output_ptr[j];
}
return 0;
}
......@@ -28,6 +28,7 @@ static const std::string g_mobilenet_ssd = "../models/mobilenet+ssd";
static const std::string g_squeezenet = "../models/squeezenet";
static const std::string g_resnet =
"../models/image_classification_resnet.inference.model";
static const std::string g_yolo = "../models/yolo";
static const std::string g_test_image_1x3x224x224 =
"../images/test_image_1x3x224x224_float";
using paddle_mobile::framework::DDim;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册