Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
285066f5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
285066f5
编写于
10月 14, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
commit cl code
上级
c655b46c
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
436 addition
and
346 deletion
+436
-346
src/common/common.h
src/common/common.h
+4
-0
src/framework/cl/cl_engine.h
src/framework/cl/cl_engine.h
+1
-1
src/framework/cl/cl_image.cpp
src/framework/cl/cl_image.cpp
+99
-102
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+92
-36
src/framework/cl/cl_scope.h
src/framework/cl/cl_scope.h
+2
-1
src/framework/cl/cl_tool.h
src/framework/cl/cl_tool.h
+7
-6
src/framework/executor.cpp
src/framework/executor.cpp
+8
-5
src/operators/feed_op.h
src/operators/feed_op.h
+2
-2
src/operators/kernel/cl/cl_kernel/cl_common.h
src/operators/kernel/cl/cl_kernel/cl_common.h
+3
-3
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+31
-24
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+25
-18
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+57
-51
src/operators/kernel/cl/depthwise_conv_kernel.cpp
src/operators/kernel/cl/depthwise_conv_kernel.cpp
+29
-21
src/operators/kernel/cl/feed_kernel.cpp
src/operators/kernel/cl/feed_kernel.cpp
+36
-35
src/operators/kernel/cl/relu_kernel.cpp
src/operators/kernel/cl/relu_kernel.cpp
+4
-4
src/operators/kernel/cl/reshape_kernel.cpp
src/operators/kernel/cl/reshape_kernel.cpp
+12
-13
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+6
-6
src/operators/kernel/feed_kernel.h
src/operators/kernel/feed_kernel.h
+10
-10
test/net/test_googlenet.cpp
test/net/test_googlenet.cpp
+2
-2
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+6
-6
未找到文件。
src/common/common.h
浏览文件 @
285066f5
...
@@ -15,6 +15,8 @@ limitations under the License. */
...
@@ -15,6 +15,8 @@ limitations under the License. */
#pragma once
#pragma once
#include <chrono>
#include <chrono>
namespace
paddle_mobile
{
using
Time
=
decltype
(
std
::
chrono
::
high_resolution_clock
::
now
());
using
Time
=
decltype
(
std
::
chrono
::
high_resolution_clock
::
now
());
inline
Time
time
()
{
return
std
::
chrono
::
high_resolution_clock
::
now
();
}
inline
Time
time
()
{
return
std
::
chrono
::
high_resolution_clock
::
now
();
}
...
@@ -25,3 +27,5 @@ inline double time_diff(Time t1, Time t2) {
...
@@ -25,3 +27,5 @@ inline double time_diff(Time t1, Time t2) {
ms
counter
=
std
::
chrono
::
duration_cast
<
ms
>
(
diff
);
ms
counter
=
std
::
chrono
::
duration_cast
<
ms
>
(
diff
);
return
counter
.
count
()
/
1000.0
;
return
counter
.
count
()
/
1000.0
;
}
}
}
src/framework/cl/cl_engine.h
浏览文件 @
285066f5
...
@@ -18,8 +18,8 @@ limitations under the License. */
...
@@ -18,8 +18,8 @@ limitations under the License. */
#include <string>
#include <string>
#include "CL/cl.h"
#include "CL/cl.h"
#include "common/log.h"
#include "common/enforce.h"
#include "common/enforce.h"
#include "common/log.h"
#include "framework/cl/cl_deleter.h"
#include "framework/cl/cl_deleter.h"
#include "framework/cl/cl_tool.h"
#include "framework/cl/cl_tool.h"
...
...
src/framework/cl/cl_image.cpp
浏览文件 @
285066f5
...
@@ -14,110 +14,107 @@ limitations under the License. */
...
@@ -14,110 +14,107 @@ limitations under the License. */
#include "cl_image.h"
#include "cl_image.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
framework
{
namespace
framework
{
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
cl_command_queue
commandQueue
){
void
CLImageToTensor
(
CLImage
*
cl_image
,
Tensor
*
tensor
,
cl_command_queue
commandQueue
)
{
DDim
ddim
=
cl_image
->
dims
();
DDim
ddim
=
cl_image
->
dims
();
size_t
N
,
C
,
H
,
W
;
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
){
if
(
ddim
.
size
()
==
4
)
{
N
=
ddim
[
0
];
N
=
ddim
[
0
];
if
(
N
<
0
){
if
(
N
<
0
)
{
N
=
1
;
N
=
1
;
}
}
C
=
ddim
[
1
];
C
=
ddim
[
1
];
H
=
ddim
[
2
];
H
=
ddim
[
2
];
W
=
ddim
[
3
];
W
=
ddim
[
3
];
}
else
if
(
ddim
.
size
()
==
1
){
}
else
if
(
ddim
.
size
()
==
1
)
{
N
=
1
;
N
=
1
;
C
=
ddim
[
0
];
C
=
ddim
[
0
];
H
=
1
;
H
=
1
;
W
=
1
;
W
=
1
;
}
}
size_t
width
=
W
*
((
C
+
3
)
/
4
);
size_t
width
=
W
*
((
C
+
3
)
/
4
);
size_t
height
=
H
*
N
;
size_t
height
=
H
*
N
;
float
*
p
=
tensor
->
data
<
float
>
();
float
*
p
=
tensor
->
data
<
float
>
();
half
imageData
[
width
*
height
*
4
];
half
imageData
[
width
*
height
*
4
];
cl_int
err
;
cl_int
err
;
cl_mem
image
=
cl_image
->
GetCLImage
();
cl_mem
image
=
cl_image
->
GetCLImage
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
size_t
i0
=
0
;
imageData
,
0
,
NULL
,
NULL
);
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
size_t
i0
=
0
;
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
size_t
i1
=
i0
;
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i1
=
i0
;
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
*
p
=
half2float
(
imageData
[
i2
]);
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
i2
+=
4
;
*
p
=
half2float
(
imageData
[
i2
]);
p
++
;
i2
+=
4
;
}
p
++
;
i1
+=
width
;
}
}
i0
+=
width
*
H
;
}
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
}
}
}
void
TensorToCLImage
(
const
Tensor
*
tensor
,
CLImage
*
cl_image
,
cl_command_queue
commandQueue
){
i1
+=
width
;
}
DDim
ddim
=
cl_image
->
dims
();
}
size_t
N
,
C
,
H
,
W
;
i0
+=
width
*
H
;
if
(
ddim
.
size
()
==
4
){
}
N
=
ddim
[
0
];
if
(
N
<
0
){
N
=
1
;
}
C
=
ddim
[
1
];
H
=
ddim
[
2
];
W
=
ddim
[
3
];
}
else
if
(
ddim
.
size
()
==
1
){
N
=
1
;
C
=
ddim
[
0
];
H
=
1
;
W
=
1
;
}
size_t
width
=
W
*
((
C
+
3
)
/
4
);
size_t
height
=
H
*
N
;
const
float
*
p
=
tensor
->
data
<
float
>
();
half
imageData
[
width
*
height
*
4
];
cl_mem
image
=
cl_image
->
GetCLImage
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
cl_int
err
;
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
}
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
size_t
i1
=
i0
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
imageData
[
i2
]
=
float2half
(
*
p
);
i2
+=
4
;
p
++
;
}
i1
+=
width
;
}
}
i0
+=
width
*
H
;
}
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
}
}
void
TensorToCLImage
(
const
Tensor
*
tensor
,
CLImage
*
cl_image
,
cl_command_queue
commandQueue
)
{
DDim
ddim
=
cl_image
->
dims
();
size_t
N
,
C
,
H
,
W
;
if
(
ddim
.
size
()
==
4
)
{
N
=
ddim
[
0
];
if
(
N
<
0
)
{
N
=
1
;
}
C
=
ddim
[
1
];
H
=
ddim
[
2
];
W
=
ddim
[
3
];
}
else
if
(
ddim
.
size
()
==
1
)
{
N
=
1
;
C
=
ddim
[
0
];
H
=
1
;
W
=
1
;
}
size_t
width
=
W
*
((
C
+
3
)
/
4
);
size_t
height
=
H
*
N
;
const
float
*
p
=
tensor
->
data
<
float
>
();
half
imageData
[
width
*
height
*
4
];
cl_mem
image
=
cl_image
->
GetCLImage
();
size_t
origin
[
3
]
=
{
0
,
0
,
0
};
size_t
region
[
3
]
=
{
width
,
height
,
1
};
cl_int
err
;
err
=
clEnqueueReadImage
(
commandQueue
,
image
,
CL_TRUE
,
origin
,
region
,
0
,
0
,
imageData
,
0
,
NULL
,
NULL
);
if
(
err
!=
CL_SUCCESS
)
{
// TODO: error handling
}
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
size_t
i1
=
i0
;
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
size_t
i2
=
(
i1
<<
2
)
+
c
%
4
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
imageData
[
i2
]
=
float2half
(
*
p
);
i2
+=
4
;
p
++
;
}
}
i1
+=
width
;
}
}
}
i0
+=
width
*
H
;
}
}
}
}
// namespace framework
}
// namespace paddle_mobile
src/framework/cl/cl_image.h
浏览文件 @
285066f5
...
@@ -28,8 +28,93 @@ class CLImage {
...
@@ -28,8 +28,93 @@ class CLImage {
public:
public:
CLImage
()
=
default
;
CLImage
()
=
default
;
void
Init
(
cl_context
context
,
float
*
tensorInput
,
DDim
ddim
)
{
/*
tensor_dims_
=
ddim
;
* will not hold input tensor data, memcpy in this method
* */
void
SetTensorData
(
float
*
tensorData
,
const
DDim
&
dim
)
{
int
numel
=
product
(
dim
);
if
(
tensor_data_
!=
nullptr
)
{
delete
[](
tensor_data_
);
}
tensor_data_
=
new
float
[
numel
];
memcpy
(
tensor_data_
,
tensorData
,
numel
);
tensor_dims_
=
dim
;
}
/*
* need call SetTensorData first
* */
void
InitCLImage
(
cl_context
context
)
{
if
(
tensor_data_
==
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" need call SetTensorData first"
);
}
InitCLImage
(
context
,
tensor_data_
,
tensor_dims_
);
delete
[](
tensor_data_
);
tensor_data_
=
nullptr
;
initialized_
=
true
;
}
void
InitEmptyImage
(
cl_context
context
,
const
DDim
&
dim
)
{
if
(
tensor_data_
!=
nullptr
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" empty image tensor data shouldn't have value"
);
}
InitCLImage
(
context
,
nullptr
,
dim
);
initialized_
=
true
;
}
cl_mem
GetCLImage
()
const
{
return
cl_image_
;
}
const
DDim
&
ImageDims
()
{
return
image_dims_
;
}
inline
size_t
ImageWidth
()
const
{
return
image_width_
;
}
inline
size_t
ImageHeight
()
const
{
return
image_height_
;
}
/*
* block of channels, 4 channel one block
* */
inline
size_t
CBlock
()
const
{
return
c_block_
;
}
/*
* width of original tensor
* */
inline
size_t
WidthOfOneBlock
()
const
{
return
width_of_one_block_
;
}
/*
* height of original tensor
* */
inline
size_t
HeightOfOneBlock
()
const
{
return
height_of_one_block_
;
}
/*
* resize original tensor dim
* */
inline
CLImage
&
Resize
(
const
DDim
&
dims
)
{
tensor_dims_
=
dims
;
return
*
this
;
}
template
<
typename
T
>
T
*
data
()
const
{
if
(
initialized_
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
" cl image has initialized, tensor data has been deleted "
);
}
return
reinterpret_cast
<
T
*>
(
tensor_data_
);
}
/*
* numel of tensor dim
* */
inline
int64_t
numel
()
const
{
return
product
(
tensor_dims_
);
}
/*
* original tensor dim
* */
const
DDim
&
dims
()
const
{
return
tensor_dims_
;
}
private:
void
InitCLImage
(
cl_context
context
,
float
*
tensor_data
,
const
DDim
&
dim
)
{
cl_image_format
cf
=
{.
image_channel_order
=
CL_RGBA
,
cl_image_format
cf
=
{.
image_channel_order
=
CL_RGBA
,
.
image_channel_data_type
=
CL_HALF_FLOAT
};
.
image_channel_data_type
=
CL_HALF_FLOAT
};
// NCHW -> [W * (C+3)/4, H * N]
// NCHW -> [W * (C+3)/4, H * N]
...
@@ -62,12 +147,13 @@ class CLImage {
...
@@ -62,12 +147,13 @@ class CLImage {
image_width_
=
width
;
image_width_
=
width
;
image_height_
=
height
;
image_height_
=
height
;
image_dims_
=
make_ddim
({
image_width_
,
image_height_
});
std
::
unique_ptr
<
half_t
[]
>
imageData
{};
std
::
unique_ptr
<
half_t
[]
>
imageData
{};
int
count
=
0
;
int
count
=
0
;
if
(
tensor
Input
!=
nullptr
)
{
if
(
tensor
_data
!=
nullptr
)
{
imageData
.
reset
(
new
half_t
[
width
*
height
*
4
]);
imageData
.
reset
(
new
half_t
[
width
*
height
*
4
]);
float
*
p
=
tensor
Input
;
float
*
p
=
tensor
_data
;
size_t
i0
=
0
;
size_t
i0
=
0
;
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
for
(
int
c
=
0
;
c
<
C
;
c
++
)
{
...
@@ -108,39 +194,8 @@ class CLImage {
...
@@ -108,39 +194,8 @@ class CLImage {
// TODO(HaiPeng): error handling
// TODO(HaiPeng): error handling
PADDLE_MOBILE_THROW_EXCEPTION
(
" create image 2d error "
);
PADDLE_MOBILE_THROW_EXCEPTION
(
" create image 2d error "
);
}
}
initialized_
=
true
;
}
void
Init
(
cl_context
context
,
DDim
ddim
)
{
Init
(
context
,
nullptr
,
ddim
);
}
inline
CLImage
&
Resize
(
const
DDim
&
dims
)
{
tensor_dims_
=
dims
;
return
*
this
;
}
const
DDim
&
dims
()
const
{
return
tensor_dims_
;
}
cl_mem
GetCLImage
()
const
{
return
cl_image_
;
}
template
<
typename
T
>
T
*
data
()
const
{
return
reinterpret_cast
<
T
*>
(
tensor_input_
);
}
}
inline
int64_t
numel
()
const
{
return
product
(
tensor_dims_
);
}
inline
size_t
ImageWidth
()
const
{
return
image_width_
;
}
inline
size_t
ImageHeight
()
const
{
return
image_height_
;
}
inline
size_t
CBlock
()
const
{
return
c_block_
;
}
inline
size_t
WidthOfOneBlock
()
const
{
return
width_of_one_block_
;
}
inline
size_t
HeightOfOneBlock
()
const
{
return
height_of_one_block_
;
}
private:
bool
initialized_
=
false
;
bool
initialized_
=
false
;
cl_mem
cl_image_
;
cl_mem
cl_image_
;
size_t
image_width_
;
size_t
image_width_
;
...
@@ -149,7 +204,8 @@ class CLImage {
...
@@ -149,7 +204,8 @@ class CLImage {
size_t
image_height_
;
size_t
image_height_
;
size_t
c_block_
;
size_t
c_block_
;
DDim
tensor_dims_
;
DDim
tensor_dims_
;
float
*
tensor_input_
;
DDim
image_dims_
;
float
*
tensor_data_
;
cl_context
context_
;
cl_context
context_
;
};
};
...
...
src/framework/cl/cl_scope.h
浏览文件 @
285066f5
...
@@ -56,7 +56,8 @@ class CLScope {
...
@@ -56,7 +56,8 @@ class CLScope {
auto
program
=
CLEngine
::
Instance
()
->
CreateProgramWith
(
auto
program
=
CLEngine
::
Instance
()
->
CreateProgramWith
(
context_
.
get
(),
"./cl_kernel/"
+
file_name
);
context_
.
get
(),
"./cl_kernel/"
+
file_name
);
status_
=
clBuildProgram
(
program
.
get
(),
0
,
0
,
"-cl-fast-relaxed-math"
,
0
,
0
);
status_
=
clBuildProgram
(
program
.
get
(),
0
,
0
,
"-cl-fast-relaxed-math"
,
0
,
0
);
CL_CHECK_ERRORS
(
status_
);
CL_CHECK_ERRORS
(
status_
);
programs_
[
file_name
]
=
std
::
move
(
program
);
programs_
[
file_name
]
=
std
::
move
(
program
);
...
...
src/framework/cl/cl_tool.h
浏览文件 @
285066f5
...
@@ -21,12 +21,13 @@ namespace framework {
...
@@ -21,12 +21,13 @@ namespace framework {
const
char
*
opencl_error_to_str
(
cl_int
error
);
const
char
*
opencl_error_to_str
(
cl_int
error
);
#define CL_CHECK_ERRORS(ERR) \
#define CL_CHECK_ERRORS(ERR) \
if (ERR != CL_SUCCESS) { \
if (ERR != CL_SUCCESS) { \
printf( \
printf( \
"OpenCL error with code %s happened in file %s at line %d. " \
"OpenCL error with code %s happened in file %s at line %d. " \
"Exiting.\n", \
"Exiting.\n", \
opencl_error_to_str(ERR), __FILE__, __LINE__); \
paddle_mobile::framework::opencl_error_to_str(ERR), __FILE__, \
__LINE__); \
}
}
}
// namespace framework
}
// namespace framework
...
...
src/framework/executor.cpp
浏览文件 @
285066f5
...
@@ -928,7 +928,8 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
...
@@ -928,7 +928,8 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
framework
::
DDim
ddim
=
framework
::
make_ddim
(
desc
.
Dims
());
framework
::
DDim
ddim
=
framework
::
make_ddim
(
desc
.
Dims
());
cl_image
->
Init
(
context
,
tensorInput
,
ddim
);
// has not init
cl_image
->
SetTensorData
(
tensorInput
,
ddim
);
delete
origin_data
;
delete
origin_data
;
paddle_mobile
::
memory
::
Free
(
tensorInput
);
paddle_mobile
::
memory
::
Free
(
tensorInput
);
...
@@ -941,7 +942,7 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
...
@@ -941,7 +942,7 @@ void Executor<GPU_CL, Precision::FP32>::InitMemory() {
// framework::DDim ddim = framework::make_ddim(desc.Dims());
// framework::DDim ddim = framework::make_ddim(desc.Dims());
framework
::
DDim
ddim
=
cl_image
->
dims
();
framework
::
DDim
ddim
=
cl_image
->
dims
();
DLOG
<<
var_desc
->
Name
();
DLOG
<<
var_desc
->
Name
();
cl_image
->
Init
(
context
,
ddim
);
cl_image
->
Init
EmptyImage
(
context
,
ddim
);
}
}
}
}
}
}
...
@@ -982,7 +983,10 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
...
@@ -982,7 +983,10 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
float
*
tensorInput
=
static_cast
<
float
*>
(
float
*
tensorInput
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
numel
));
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
numel
));
LoadMemory
(
*
var_desc
,
tensorInput
,
&
origin_data
);
LoadMemory
(
*
var_desc
,
tensorInput
,
&
origin_data
);
cl_image
->
Init
(
context
,
tensorInput
,
ddim
);
// has not init
cl_image
->
SetTensorData
(
tensorInput
,
ddim
);
paddle_mobile
::
memory
::
Free
(
tensorInput
);
paddle_mobile
::
memory
::
Free
(
tensorInput
);
}
else
{
}
else
{
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
auto
cl_image
=
var
->
template
GetMutable
<
framework
::
CLImage
>();
...
@@ -991,8 +995,7 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
...
@@ -991,8 +995,7 @@ void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
const
framework
::
TensorDesc
&
desc
=
var_desc
->
Tensor_desc
();
const
framework
::
TensorDesc
&
desc
=
var_desc
->
Tensor_desc
();
framework
::
DDim
ddim
=
cl_image
->
dims
();
framework
::
DDim
ddim
=
cl_image
->
dims
();
// framework::DDim ddim = framework::make_ddim(desc.Dims());
// framework::DDim ddim = framework::make_ddim(desc.Dims());
cl_image
->
InitEmptyImage
(
context
,
ddim
);
cl_image
->
Init
(
context
,
ddim
);
}
}
}
}
}
}
...
...
src/operators/feed_op.h
浏览文件 @
285066f5
...
@@ -98,8 +98,8 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
...
@@ -98,8 +98,8 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
void
Init
()
{}
void
Init
()
{}
void
RunImpl
()
{
void
RunImpl
()
{
param_
.
Out
()
->
ShareDataWith
(
*
param_
.
InputX
());
param_
.
Out
()
->
ShareDataWith
(
*
param_
.
InputX
());
param_
.
Out
()
->
set_lod
(
param_
.
InputX
()
->
lod
());
param_
.
Out
()
->
set_lod
(
param_
.
InputX
()
->
lod
());
}
}
protected:
protected:
...
...
src/operators/kernel/cl/cl_kernel/cl_common.h
浏览文件 @
285066f5
...
@@ -18,9 +18,10 @@ limitations under the License. */
...
@@ -18,9 +18,10 @@ limitations under the License. */
inline
hafl4
activation
(
half4
in
inline
hafl4
activation
(
half4
in
#ifdef PRELU
#ifdef PRELU
,
half4
prelu_alpha
,
half4
prelu_alpha
#endif
#endif
)
{
)
{
half4
output
;
half4
output
;
#ifdef PRELU
#ifdef PRELU
output
=
select
(
prelu_alpha
*
in
,
in
,
in
>=
(
half4
)
0
.
0
);
output
=
select
(
prelu_alpha
*
in
,
in
,
in
>=
(
half4
)
0
.
0
);
...
@@ -31,4 +32,3 @@ inline hafl4 activation(half4 in
...
@@ -31,4 +32,3 @@ inline hafl4 activation(half4 in
#endif
#endif
return
output
;
return
output
;
}
}
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
285066f5
...
@@ -16,6 +16,7 @@ limitations under the License. */
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tool.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
...
@@ -56,15 +57,15 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
...
@@ -56,15 +57,15 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
new_scale
->
Init
(
this
->
cl_helper_
.
CLContext
(),
new_scale_ptr
,
new_scale
->
SetTensorData
(
new_scale_ptr
,
variance
->
dims
());
variance
->
dims
());
new_scale
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
new_bias
->
Init
(
this
->
cl_helper_
.
CLContext
(),
new_bias_ptr
,
variance
->
dims
());
new_bias
->
SetTensorData
(
new_bias_ptr
,
variance
->
dims
());
new_bias
->
InitCLImage
(
this
->
cl_helper_
.
CLContext
());
param
->
SetNewScale
(
new_scale
);
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
param
->
SetNewBias
(
new_bias
);
PADDLE_MOBILE_ENFORCE
(
PADDLE_MOBILE_ENFORCE
(
...
@@ -115,26 +116,32 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
...
@@ -115,26 +116,32 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
cl_int
status
;
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
285066f5
...
@@ -65,24 +65,31 @@ void ConvAddKernel<GPU_CL, float>::Compute(
...
@@ -65,24 +65,31 @@ void ConvAddKernel<GPU_CL, float>::Compute(
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
cl_int
status
;
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
285066f5
...
@@ -21,63 +21,69 @@ namespace operators {
...
@@ -21,63 +21,69 @@ namespace operators {
template
<
>
template
<
>
bool
ConvKernel
<
GPU_CL
,
float
>::
Init
(
ConvParam
<
GPU_CL
>
*
param
)
{
bool
ConvKernel
<
GPU_CL
,
float
>::
Init
(
ConvParam
<
GPU_CL
>
*
param
)
{
//
PADDLE_MOBILE_ENFORCE(
PADDLE_MOBILE_ENFORCE
(
//
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
//
param->Paddings()[0] == param->Paddings()[1],
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
//
"need equal");
"need equal"
);
// int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
// static_cast<int>(param->Paddings()[1]);
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
// param->SetOffset(offset
);
static_cast
<
int
>
(
param
->
Paddings
()[
1
]
);
//
param
->
SetOffset
(
offset
);
// if (param->Filter()->WidthOfOneBlock() == 1 &&
// param->Filter()->HeightOfOneBlock() == 1) {
if
(
param
->
Filter
()
->
WidthOfOneBlock
()
==
1
&&
// this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
param
->
Filter
()
->
HeightOfOneBlock
()
==
1
)
{
// } else if (param->Filter()->dims()[1] == 1) {
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
// this->cl_helper_.AddKernel("depth_conv_3x3",
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
)
{
//
"conv_add_bn_relu_kernel.cl");
this
->
cl_helper_
.
AddKernel
(
"depth_conv_3x3"
,
"conv_add_bn_relu_kernel.cl"
);
//
} else if (param->Filter()->WidthOfOneBlock() == 3 &&
}
else
if
(
param
->
Filter
()
->
WidthOfOneBlock
()
==
3
&&
//
param->Filter()->HeightOfOneBlock() == 3) {
param
->
Filter
()
->
HeightOfOneBlock
()
==
3
)
{
//
this->cl_helper_.AddKernel("conv_3x3", "conv_add_bn_relu_kernel.cl");
this
->
cl_helper_
.
AddKernel
(
"conv_3x3"
,
"conv_add_bn_relu_kernel.cl"
);
//
} else {
}
else
{
//
PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
PADDLE_MOBILE_THROW_EXCEPTION
(
" not support "
);
//
}
}
return
true
;
return
true
;
}
}
template
<
>
template
<
>
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
// auto kernel = this->cl_helper_.KernelAt(0);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
// auto default_work_size =
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
// this->cl_helper_.DefaultWorkSize(*param.Output()); int c_block =
int
c_block
=
default_work_size
[
0
];
// default_work_size[0]; int w = default_work_size[1]; int nh =
int
w
=
default_work_size
[
1
];
// default_work_size[2]; auto input = param.Input()->GetCLImage(); auto
int
nh
=
default_work_size
[
2
];
// filter = param.Filter()->GetCLImage(); auto output = param.Output(); int
auto
input
=
param
.
Input
()
->
GetCLImage
();
// stride = param.Strides()[0]; int offset = param.Offset(); int input_c =
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
// param.Input()->CBlock(); int dilation = param.Dilations()[0]; int
auto
output
=
param
.
Output
();
// input_width = param.Input()->WidthOfOneBlock(); int input_height =
int
stride
=
param
.
Strides
()[
0
];
// param.Input()->HeightOfOneBlock();
int
offset
=
param
.
Offset
();
//
int
input_c
=
param
.
Input
()
->
CBlock
();
// clSetKernelArg(kernel, 0, sizeof(int), &c_block);
int
dilation
=
param
.
Dilations
()[
0
];
// clSetKernelArg(kernel, 1, sizeof(int), &w);
int
input_width
=
param
.
Input
()
->
WidthOfOneBlock
();
// clSetKernelArg(kernel, 2, sizeof(int), &nh);
int
input_height
=
param
.
Input
()
->
HeightOfOneBlock
();
// clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
// clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
cl_int
status
;
// clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
// clSetKernelArg(kernel, 6, sizeof(int), &stride);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
// clSetKernelArg(kernel, 7, sizeof(int), &offset);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
// clSetKernelArg(kernel, 8, sizeof(int), &input_c);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
// clSetKernelArg(kernel, 9, sizeof(int), &dilation);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
// clSetKernelArg(kernel, 10, sizeof(int), &input_width);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
// clSetKernelArg(kernel, 11, sizeof(int), &input_height);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
//
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
// default_work_size.data(), NULL, 0, NULL, NULL);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
// auto kernel = this->cl_helper_.KernelAt(0);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
// size_t global_work_size[3] = {1, 2, 3};
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
// global_work_size, NULL, 0, NULL, NULL);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvKernel
<
GPU_CL
,
float
>;
template
class
ConvKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/depthwise_conv_kernel.cpp
浏览文件 @
285066f5
...
@@ -24,9 +24,9 @@ template <>
...
@@ -24,9 +24,9 @@ template <>
bool
DepthwiseConvKernel
<
GPU_CL
,
float
>::
Init
(
ConvParam
<
GPU_CL
>
*
param
)
{
bool
DepthwiseConvKernel
<
GPU_CL
,
float
>::
Init
(
ConvParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
" depthwise conv kernel init begin "
;
DLOG
<<
" depthwise conv kernel init begin "
;
PADDLE_MOBILE_ENFORCE
(
PADDLE_MOBILE_ENFORCE
(
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
],
"need equal"
);
"need equal"
);
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
int
offset
=
static_cast
<
int
>
(
param
->
Filter
()
->
dims
()[
2
])
/
2
-
static_cast
<
int
>
(
param
->
Paddings
()[
1
]);
static_cast
<
int
>
(
param
->
Paddings
()[
1
]);
param
->
SetOffset
(
offset
);
param
->
SetOffset
(
offset
);
...
@@ -36,7 +36,8 @@ bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
...
@@ -36,7 +36,8 @@ bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
}
}
template
<
>
template
<
>
void
DepthwiseConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
void
DepthwiseConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
c_block
=
default_work_size
[
0
];
...
@@ -54,23 +55,30 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m)
...
@@ -54,23 +55,30 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m)
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_width
=
param
.
Output
()
->
WidthOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
int
output_height
=
param
.
Output
()
->
HeightOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
cl_int
status
;
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
DepthwiseConvKernel
<
GPU_CL
,
float
>;
template
class
DepthwiseConvKernel
<
GPU_CL
,
float
>;
...
@@ -78,4 +86,4 @@ template class DepthwiseConvKernel<GPU_CL, float>;
...
@@ -78,4 +86,4 @@ template class DepthwiseConvKernel<GPU_CL, float>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
#endif
#endif
\ No newline at end of file
src/operators/kernel/cl/feed_kernel.cpp
浏览文件 @
285066f5
...
@@ -12,42 +12,43 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,42 +12,43 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "common/log.h"
#include "operators/kernel/feed_kernel.h"
#include "operators/kernel/feed_kernel.h"
#include "common/log.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
template
<
>
template
<
>
bool
FeedKernel
<
GPU_CL
,
float
>::
Init
(
FeedParam
<
GPU_CL
>
*
param
)
{
bool
FeedKernel
<
GPU_CL
,
float
>::
Init
(
FeedParam
<
GPU_CL
>
*
param
)
{
DLOG
<<
"Init feed"
;
DLOG
<<
"Init feed"
;
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
this
->
cl_helper_
.
AddKernel
(
"feed"
,
"feed_kernel.cl"
);
return
true
;
return
true
;
}
}
template
<
>
template
<
>
void
FeedKernel
<
GPU_CL
,
float
>::
Compute
(
const
FeedParam
<
GPU_CL
>
&
param
)
{
void
FeedKernel
<
GPU_CL
,
float
>::
Compute
(
const
FeedParam
<
GPU_CL
>
&
param
)
{
DLOG
<<
"feed_kernel"
;
DLOG
<<
"feed_kernel"
;
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
cl_int
status
;
cl_int
status
;
auto
output
=
param
.
Out
();
auto
output
=
param
.
Out
();
auto
input
=
param
.
InputX
();
auto
input
=
param
.
InputX
();
DLOG
<<
" input: "
<<
input
;
const
float
*
input_data
=
input
->
data
<
float
>
();
cl_mem
cl_image
=
output
->
GetCLImage
();
const
float
*
input_data
=
input
->
data
<
float
>
();
int
height
=
output
->
dims
()[
2
];
cl_mem
cl_image
=
output
->
GetCLImage
();
int
width
=
output
->
dims
()[
3
];
int
height
=
output
->
dims
()[
2
];
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_data
);
int
width
=
output
->
dims
()[
3
];
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
cl_image
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_data
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
width
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
cl_image
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
height
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
width
);
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
height
);
size_t
global_work_size
[
2
]
=
{
height
,
width
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
size_t
global_work_size
[
2
]
=
{
height
,
width
};
}
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
template
class
FeedKernel
<
GPU_CL
,
float
>;
}
}
// namespace operators
template
class
FeedKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
src/operators/kernel/cl/relu_kernel.cpp
浏览文件 @
285066f5
...
@@ -19,13 +19,13 @@ namespace paddle_mobile {
...
@@ -19,13 +19,13 @@ namespace paddle_mobile {
namespace
operators
{
namespace
operators
{
template
<
>
template
<
>
bool
ReluKernel
<
GPU_CL
,
float
>::
Init
(
ReluParam
<
GPU_CL
>
*
param
)
{
bool
ReluKernel
<
GPU_CL
,
float
>::
Init
(
ReluParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"relu"
,
"relu.cl"
);
this
->
cl_helper_
.
AddKernel
(
"relu"
,
"relu.cl"
);
return
true
;
return
true
;
}
}
template
<
>
template
<
>
void
ReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReluParam
<
GPU_CL
>
&
param
)
{
void
ReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
const
auto
*
input
=
param
.
InputX
();
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
*
output
=
param
.
Out
();
...
@@ -34,7 +34,7 @@ void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL> ¶m) {
...
@@ -34,7 +34,7 @@ void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL> ¶m) {
auto
outputImage
=
output
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()
};
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
}
...
@@ -43,4 +43,4 @@ template class ReluKernel<GPU_CL, float>;
...
@@ -43,4 +43,4 @@ template class ReluKernel<GPU_CL, float>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
#endif
#endif
\ No newline at end of file
src/operators/kernel/cl/reshape_kernel.cpp
浏览文件 @
285066f5
...
@@ -25,30 +25,29 @@ bool ReshapeKernel<GPU_CL, float>::Init(ReshapeParam<GPU_CL> *param) {
...
@@ -25,30 +25,29 @@ bool ReshapeKernel<GPU_CL, float>::Init(ReshapeParam<GPU_CL> *param) {
template
<
>
template
<
>
void
ReshapeKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReshapeParam
<
GPU_CL
>
&
param
)
{
void
ReshapeKernel
<
GPU_CL
,
float
>::
Compute
(
const
ReshapeParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
const
auto
*
input
=
param
.
InputX
();
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
*
output
=
param
.
Out
();
auto
inputImage
=
input
->
GetCLImage
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
outputDim
=
output
->
dims
();
const
auto
&
outputDim
=
output
->
dims
();
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
int
odims
[
4
]
=
{
outputDim
[
0
],
outputDim
[
1
],
outputDim
[
2
],
outputDim
[
3
]};
int
odims
[
4
]
=
{
outputDim
[
0
],
outputDim
[
1
],
outputDim
[
2
],
outputDim
[
3
]};
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
odims
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
odims
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
odims
+
1
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
odims
+
1
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
odims
+
2
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
odims
+
2
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
odims
+
3
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
odims
+
3
);
const
size_t
work_size
[
2
]
=
{
output
->
ImageWidth
(),
output
->
ImageHeight
()
};
const
size_t
work_size
[
2
]
=
{
output
->
ImageWidth
(),
output
->
ImageHeight
()
};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
}
template
class
ReshapeKernel
<
GPU_CL
,
float
>;
template
class
ReshapeKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
285066f5
...
@@ -29,18 +29,18 @@ template <>
...
@@ -29,18 +29,18 @@ template <>
void
SoftmaxKernel
<
GPU_CL
,
float
>::
Compute
(
const
SoftmaxParam
<
GPU_CL
>
&
param
)
{
void
SoftmaxKernel
<
GPU_CL
,
float
>::
Compute
(
const
SoftmaxParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
(
param
.
Out
()));
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
(
param
.
Out
()));
const
auto
*
input
=
param
.
InputX
();
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
*
output
=
param
.
Out
();
auto
inputImage
=
input
->
GetCLImage
();
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
auto
&
inputDim
=
input
->
dims
();
const
auto
&
inputDim
=
input
->
dims
();
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
int
dims
[
4
]
=
{
inputDim
[
0
],
inputDim
[
1
],
inputDim
[
2
],
inputDim
[
3
]};
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
dims
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
dims
+
1
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
dims
+
2
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
dims
+
3
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
...
...
src/operators/kernel/feed_kernel.h
浏览文件 @
285066f5
...
@@ -18,15 +18,15 @@ limitations under the License. */
...
@@ -18,15 +18,15 @@ limitations under the License. */
#include "operators/op_param.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
using
namespace
framework
;
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
template
<
typename
DeviceType
,
typename
T
>
class
FeedKernel
class
FeedKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
FeedParam
<
DeviceType
>>
{
:
public
framework
::
OpKernelBase
<
DeviceType
,
FeedParam
<
DeviceType
>>
{
public:
public:
void
Compute
(
const
FeedParam
<
DeviceType
>
&
param
);
void
Compute
(
const
FeedParam
<
DeviceType
>
&
param
);
bool
Init
(
FeedParam
<
DeviceType
>
*
param
);
bool
Init
(
FeedParam
<
DeviceType
>
*
param
);
};
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
test/net/test_googlenet.cpp
浏览文件 @
285066f5
...
@@ -29,8 +29,8 @@ int main() {
...
@@ -29,8 +29,8 @@ int main() {
bool
optimize
=
true
;
bool
optimize
=
true
;
auto
time1
=
time
();
auto
time1
=
time
();
if
(
paddle_mobile
.
Load
(
g_googlenet
,
optimize
))
{
if
(
paddle_mobile
.
Load
(
g_googlenet
,
optimize
))
{
auto
time2
=
time
();
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
time_diff
(
time1
,
time2
)
<<
"ms"
<<
std
::
endl
;
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time2
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input
;
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
dims
);
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
dims
);
...
...
test/net/test_mobilenet_GPU.cpp
浏览文件 @
285066f5
...
@@ -19,14 +19,14 @@ limitations under the License. */
...
@@ -19,14 +19,14 @@ limitations under the License. */
int
main
()
{
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
GPU_CL
>
paddle_mobile
;
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
GPU_CL
>
paddle_mobile
;
// paddle_mobile.SetThreadNum(4);
// paddle_mobile.SetThreadNum(4);
auto
time1
=
time
();
auto
time1
=
paddle_mobile
::
time
();
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
// std::string(g_mobilenet_detect) + "/params", true);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
false
);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
false
);
if
(
isok
)
{
if
(
isok
)
{
auto
time2
=
time
();
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input
;
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
...
@@ -42,13 +42,13 @@ int main() {
...
@@ -42,13 +42,13 @@ int main() {
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
}
auto
time3
=
time
();
auto
time3
=
paddle_mobile
::
time
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
}
DLOG
<<
vec_result
;
DLOG
<<
vec_result
;
auto
time4
=
time
();
auto
time4
=
paddle_mobile
::
time
();
std
::
cout
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
/
10
<<
"ms"
std
::
cout
<<
"predict cost :"
<<
paddle_mobile
::
time_diff
(
time3
,
time4
)
/
10
<<
"ms"
<<
std
::
endl
;
<<
std
::
endl
;
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录