未验证 提交 2542c4e6 编写于 作者: X xiaogang 提交者: GitHub

add multi_thread ut (#2677) (#2683)

* feat: add multi_thread ut
上级 e38aee0f
......@@ -315,6 +315,16 @@ if(NOT IOS)
FPGA_DEPS ${fpga_kernels}
X86_DEPS ${x86_kernels}
CUDA_DEPS ${cuda_kernels})
lite_cc_binary(multithread_test SRCS lite_multithread_test.cc DEPS paddle_api_full paddle_api_light gflags utils
${ops} ${host_kernels}
ARM_DEPS ${arm_kernels}
CV_DEPS paddle_cv_arm
NPU_DEPS ${npu_kernels}
XPU_DEPS ${xpu_kernels}
CL_DEPS ${opencl_kernels}
FPGA_DEPS ${fpga_kernels}
X86_DEPS ${x86_kernels}
CUDA_DEPS ${cuda_kernels})
endif()
#lite_cc_binary(cxx_api_bin SRCS cxx_api_bin.cc
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/device_info.h"
#include "lite/core/profile/timer.h"
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/basic_profiler.h"
#endif // LITE_WITH_PROFILE
#include <thread> // NOLINT
using paddle::lite::profile::Timer;
DEFINE_string(input_shape,
"1,3,224,224",
"input shapes, separated by colon and comma");
DEFINE_string(model_dir_0, "", "model_dir_0");
DEFINE_string(input_shape_0,
"1,3,224,224",
"input shapes another, separated by colon and comma");
DEFINE_bool(use_optimize_nb,
false,
"optimized & naive buffer model for mobile devices");
DEFINE_int32(test_type, 0, "multithread test type");
namespace paddle {
namespace lite_api {
void OutputOptModel(const std::string& load_model_dir,
const std::string& save_optimized_model_dir,
const std::vector<std::vector<int64_t>>& input_shapes) {
lite_api::CxxConfig config;
config.set_model_dir(load_model_dir);
config.set_valid_places({
Place{TARGET(kARM), PRECISION(kFloat)},
});
auto predictor = lite_api::CreatePaddlePredictor(config);
// delete old optimized model
int ret = system(
paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
.c_str());
if (ret == 0) {
LOG(INFO) << "delete old optimized model " << save_optimized_model_dir;
}
predictor->SaveOptimizedModel(save_optimized_model_dir,
LiteModelType::kNaiveBuffer);
LOG(INFO) << "Load model from " << load_model_dir;
LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::vector<std::vector<int64_t>>& input_shapes,
const std::string& model_dir,
const PowerMode power_mode,
const int thread_num,
const int repeat,
int tid,
const int warmup_times = 5) {
lite_api::MobileConfig config;
config.set_model_dir(model_dir);
config.set_power_mode(power_mode);
config.set_threads(thread_num);
auto predictor = lite_api::CreatePaddlePredictor(config);
for (int j = 0; j < input_shapes.size(); ++j) {
auto input_tensor = predictor->GetInput(j);
input_tensor->Resize(input_shapes[j]);
auto input_data = input_tensor->mutable_data<float>();
int input_num = 1;
for (int i = 0; i < input_shapes[j].size(); ++i) {
input_num *= input_shapes[j][i];
}
for (int i = 0; i < input_num; ++i) {
input_data[i] = 1.f;
}
}
for (int i = 0; i < warmup_times; ++i) {
predictor->Run();
}
Timer ti;
for (int j = 0; j < repeat; ++j) {
ti.Start();
predictor->Run();
float t = ti.Stop();
auto output = predictor->GetOutput(0);
auto out = output->data<float>();
LOG(INFO) << "[thread " << tid << "] Model: " << model_dir
<< " output[0]:" << out[0] << "; output[1]:" << out[1];
}
LOG(INFO) << "[thread " << tid << "] Model: " << model_dir
<< ", power_mode: " << static_cast<int>(power_mode)
<< ", threads num " << thread_num
<< ", avg time: " << ti.LapTimes().Avg() << "ms"
<< ", min time: " << ti.LapTimes().Min() << " ms"
<< ", max time: " << ti.LapTimes().Max() << " ms.";
}
void RunTestType_00(const std::vector<std::vector<int64_t>>& input_shapes,
const std::string& model_dir,
const PowerMode power_mode,
const int thread_num,
const int repeat,
const int warmup_times = 5) {
std::thread run_th0(Run,
input_shapes,
model_dir,
power_mode,
thread_num,
repeat,
0,
warmup_times);
Run(input_shapes, model_dir, power_mode, thread_num, repeat, 1, warmup_times);
run_th0.join();
}
void RunTestType_01(const std::vector<std::vector<int64_t>>& input_shapes,
const std::string& model_dir,
const std::vector<std::vector<int64_t>>& input_shapes_0,
const std::string& model_dir_0,
const PowerMode power_mode,
const int thread_num,
const int repeat,
const int warmup_times = 5) {
std::thread run_th0(Run,
input_shapes,
model_dir,
power_mode,
thread_num,
repeat,
0,
warmup_times);
Run(input_shapes_0,
model_dir_0,
power_mode,
thread_num,
repeat,
1,
warmup_times);
run_th0.join();
}
void run_with_predictor(std::shared_ptr<PaddlePredictor> predictor,
const std::vector<std::vector<int64_t>>& input_shapes,
int index,
const std::string& name) {
for (int j = 0; j < input_shapes.size(); ++j) {
auto input_tensor = predictor->GetInput(j);
input_tensor->Resize(input_shapes[j]);
auto input_data = input_tensor->mutable_data<float>();
int input_num = 1;
for (int i = 0; i < input_shapes[j].size(); ++i) {
input_num *= input_shapes[j][i];
}
for (int i = 0; i < input_num; ++i) {
input_data[i] = 1.f;
}
}
Timer ti;
ti.Start();
predictor->Run();
float t = ti.Stop();
auto output = predictor->GetOutput(0);
auto out = output->data<float>();
LOG(INFO) << "[thread " << index << "] name: " << name
<< ",run time: " << ti.LapTimes().Avg() << "ms"
<< " output[0]:" << out[0] << "; output[1]:" << out[1];
}
void RunTestType_10(const std::vector<std::vector<int64_t>>& input_shapes,
const std::string& model_dir,
const PowerMode power_mode,
const int thread_num,
const int repeat,
int warmup = 5) {
lite_api::MobileConfig config;
config.set_model_dir(model_dir);
config.set_power_mode(power_mode);
config.set_threads(thread_num);
auto predictor = lite_api::CreatePaddlePredictor(config);
for (int i = 0; i < repeat; ++i) {
std::thread pre_th0(
run_with_predictor, predictor, input_shapes, i, model_dir);
pre_th0.join();
}
}
void RunTestType_11(const std::vector<std::vector<int64_t>>& input_shapes,
const std::string& model_dir,
const std::vector<std::vector<int64_t>>& input_shapes_0,
const std::string& model_dir_0,
const PowerMode power_mode,
const int thread_num,
const int repeat,
int warmup = 5) {
lite_api::MobileConfig config;
config.set_model_dir(model_dir);
config.set_power_mode(power_mode);
config.set_threads(thread_num);
auto predictor = lite_api::CreatePaddlePredictor(config);
config.set_model_dir(model_dir_0);
auto predictor_0 = lite_api::CreatePaddlePredictor(config);
for (int i = 0; i < 2 * repeat; i += 2) {
std::thread pre_th0(
run_with_predictor, predictor, input_shapes, i, model_dir);
std::thread pre_th1(
run_with_predictor, predictor_0, input_shapes_0, i + 1, model_dir_0);
pre_th0.join();
pre_th1.join();
}
}
#endif
} // namespace lite_api
} // namespace paddle
int main(int argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
LOG(INFO) << "usage: "
<< "--model_dir /path/to/your/model";
exit(0);
}
std::string save_optimized_model_dir = "";
std::string save_optimized_model_dir_0 = "";
if (FLAGS_use_optimize_nb) {
save_optimized_model_dir = FLAGS_model_dir;
save_optimized_model_dir_0 = FLAGS_model_dir_0;
} else {
save_optimized_model_dir = FLAGS_model_dir + "opt2";
save_optimized_model_dir_0 = FLAGS_model_dir_0 + "opt2";
}
auto split_string =
[](const std::string& str_in) -> std::vector<std::string> {
std::vector<std::string> str_out;
std::string tmp_str = str_in;
while (!tmp_str.empty()) {
size_t next_offset = tmp_str.find(":");
str_out.push_back(tmp_str.substr(0, next_offset));
if (next_offset == std::string::npos) {
break;
} else {
tmp_str = tmp_str.substr(next_offset + 1);
}
}
return str_out;
};
auto get_shape = [](const std::string& str_shape) -> std::vector<int64_t> {
std::vector<int64_t> shape;
std::string tmp_str = str_shape;
while (!tmp_str.empty()) {
int dim = atoi(tmp_str.data());
shape.push_back(dim);
size_t next_offset = tmp_str.find(",");
if (next_offset == std::string::npos) {
break;
} else {
tmp_str = tmp_str.substr(next_offset + 1);
}
}
return shape;
};
std::vector<std::string> str_input_shapes = split_string(FLAGS_input_shape);
std::vector<std::vector<int64_t>> input_shapes;
for (int i = 0; i < str_input_shapes.size(); ++i) {
input_shapes.push_back(get_shape(str_input_shapes[i]));
}
std::vector<std::string> str_input_shapes_0 =
split_string(FLAGS_input_shape_0);
std::vector<std::vector<int64_t>> input_shapes_0;
for (int i = 0; i < str_input_shapes_0.size(); ++i) {
input_shapes_0.push_back(get_shape(str_input_shapes_0[i]));
}
if (!FLAGS_use_optimize_nb) {
// Output optimized model
paddle::lite_api::OutputOptModel(
FLAGS_model_dir, save_optimized_model_dir, input_shapes);
paddle::lite_api::OutputOptModel(
FLAGS_model_dir_0, save_optimized_model_dir_0, input_shapes_0);
}
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
// Run inference using optimized model
if (FLAGS_test_type == 0) {
paddle::lite_api::RunTestType_00(
input_shapes,
save_optimized_model_dir,
static_cast<paddle::lite_api::PowerMode>(0),
FLAGS_threads,
FLAGS_repeats,
5);
LOG(INFO) << "=========above is case 0, below is case "
"1============================";
paddle::lite_api::RunTestType_10(
input_shapes,
save_optimized_model_dir,
static_cast<paddle::lite_api::PowerMode>(0),
FLAGS_threads,
FLAGS_repeats);
}
if (FLAGS_test_type == 1) {
paddle::lite_api::RunTestType_01(
input_shapes,
save_optimized_model_dir,
input_shapes_0,
save_optimized_model_dir_0,
static_cast<paddle::lite_api::PowerMode>(0),
FLAGS_threads,
FLAGS_repeats,
5);
LOG(INFO) << "=========above is case 0, below is case "
"1============================";
paddle::lite_api::RunTestType_11(
input_shapes,
save_optimized_model_dir,
input_shapes_0,
save_optimized_model_dir_0,
static_cast<paddle::lite_api::PowerMode>(0),
FLAGS_threads,
FLAGS_repeats);
}
#endif
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册