提交 21e8aeb4 编写于 作者: W wangqun

[doc]paddle.js user doc

[doc]paddle.js user doc
上级 9da08213
[中文版](https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/web/README_cn.md)
# Web
Web project is an open source deep learning framework designed to work on web browser. It could run on nearly every browser with WebGL support.
## Key Features
### Modular
Web project is built on Atom system which is a versatile framework to support GPGPU operation on WebGL. It is quite modular and could be used to make computation tasks faster by utilizing WebGL.
### High Performance
Web project could run TinyYolo model in less than 30ms on chrome. This is fast enough to run deep learning models in many realtime scenarios.
### Browser Coverage
* PC: Chrome
* Mac: Chrome
* Android: Baidu App and QQ Browser
## How To Build & Deploy Demo
```bash
cd web # enter root directory for web project
npm i # install dependencies for npm
mkdir dist # create deployment directory
cd dist # enter deployment directory
git clone https://github.com/DerekYangMing/Paddle-Web-Models.git # get models
mv Paddle-Web-Models/separablemodel . # move models to specific directory
cd .. # return to root directory for web project
npm run testVideoDemo # start demo
```
## How To Preview Demo
1. Open chrome with url: https://localhost:8123/
2. Start demo by pressing the 【start detection】 button.
3. Ensure at least one face is recorded by the camera. The face detection rectangle should be displayed if everything goes fine.
## Feedback and Community Support
- Questions, reports, and suggestions are welcome through Github Issues!
- Forum: Opinions and questions are welcome at our [PaddlePaddle Forum](https://ai.baidu.com/forum/topic/list/168)
- QQ group chat: 696965088
......@@ -2,7 +2,7 @@
# Web
Web project is an open source deep learning framework designed to work on web browser. It could run on nearly every browser with WebGL support.
Paddle.js is an Web project for Baidu Paddle, which is an an open source deep learning framework designed to work on web browser. Load a pretrained paddle.js SavedModel or Paddle Hub module into the browser and run inference through Paddle.js. It could run on nearly every browser with WebGL support.
## Key Features
......@@ -20,24 +20,93 @@ Web project could run TinyYolo model in less than 30ms on chrome. This is fast e
* Mac: Chrome
* Android: Baidu App and QQ Browser
## How To Build & Deploy Demo
### Supported operations
Currently Paddle.js only supports a limited set of Paddle Ops. See the full list. If your model uses unsupported ops, the Paddle.js script will fail and produce a list of the unsupported ops in your model. Please file issues to let us know what ops you need support with.
[Supported operations Pages](./src/factory/fshader/README.md)
## Loading and running in the browser
If the original model was a SavedModel, use paddle.load().
```bash
cd web # enter root directory for web project
npm i # install dependencies for npm
mkdir dist # create deployment directory
cd dist # enter deployment directory
git clone https://github.com/DerekYangMing/Paddle-Web-Models.git # get models
mv Paddle-Web-Models/separablemodel . # move models to specific directory
cd .. # return to root directory for web project
npm run testVideoDemo # start demo
import * as tf from 'paddlejs';
let feed = io.process({
input: document.getElementById('image'),
params: {
gapFillWith: '#000', // What to use to fill the square part after zooming
targetSize: {
height: fw,
width: fh
},
targetShape: [1, 3, fh, fw], // Target shape changed its name to be compatible with previous logic
// shape: [3, 608, 608], // Preset sensor shape
mean: [117.001, 114.697, 97.404], // Preset mean
// std: [0.229, 0.224, 0.225] // Preset std
}
});
const MODEL_CONFIG = {
dir: `/${path}/`, // model URL
main: 'model.json', // main graph
};
const paddle = new Paddle({
urlConf: MODEL_CONFIG,
options: {
multipart: true,
dataType: 'binary',
options: {
fileCount: 1, // How many model have been cut
getFileName(i) {
return 'chunk_' + i + '.dat';
}
}
}
});
model = await paddle.load();
//
let inst = model.execute({
input: feed
});
// There should be a fetch execution call or a fetch output
let result = await inst.read();
```
## How To Preview Demo
Please see feed documentation for details.
Please see fetch documentation for details.
## Run the converter script provided by the pip package:
The converter expects a Paddlejs SavedModel, Paddle Hub module, Tpaddle.js JSON format for input.
## Web-friendly format
The conversion script above produces 2 types of files:
- model.json (the dataflow graph and weight manifest file)
- group1-shard\*of\* (collection of binary weight files)
## Preview Demo
Paddle.js has some pre-converted models to Paddle.js format .There are some demos in the following URL, open a browser page with the demo.
[Supported Demo Pages](./examples/README.md)
1. Open chrome with url: https://localhost:8123/
2. Start demo by pressing the 【start detection】 button.
3. Ensure at least one face is recorded by the camera. The face detection rectangle should be displayed if everything goes fine.
## Feedback and Community Support
......
# PaddleJS Examples
百度PaddleJS使用现成的 JavaScript 模型或转换 Paddle 模型以在浏览器中运行
百度PaddleJS使用现成的或者通过转换工具转换的 JavaScript 友好的paddle模型以在浏览器中运行,在浏览器中实现在线推理能力
## 演示
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册