未验证 提交 2136df97 编写于 作者: J juncaipeng 提交者: GitHub

modify model_quantization doc (#2611)


* modify model_quantization doc,  test=develop
上级 8bc88cff
......@@ -223,7 +223,7 @@ python compress.py \
下面以MobileNetV1为例,介绍使用训练后量化方法产出量化模型。关于训练后量化的原理和详细使用方法,请参考[文档](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)
> 该示例的代码放在[models/PaddleSlim/quant_low_level_api/](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)目录下。如果需要执行该示例,首先clone下来[models](https://github.com/PaddlePaddle/models.git),安装具有训练后量化功能的PaddlePaddle,然后执行[run_post_training_quanzation.sh](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/quant_low_level_api/run_post_training_quanzation.sh) 脚本,最后量化模型保存在`mobilenetv1_int8_model`目录下
> 该示例的代码放在[models/PaddleSlim/quant_low_level_api/](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)目录下。如果需要执行该示例,首先clone下来[models](https://github.com/PaddlePaddle/models.git),安装具有训练后量化功能的PaddlePaddle。因为目前Lite支持支持对conv2d、depthwise_conv2d和mul量化,所以修改[run_post_training_quanzation.sh](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/quant_low_level_api/run_post_training_quanzation.sh) 脚本,设置is_full_quantize=False,然后执行该脚本;执行结束后,量化模型保存在`mobilenetv1_int8_model`目录下。下面介绍详细步骤
1)**准备模型和校准数据**
......
......@@ -223,7 +223,7 @@ python compress.py \
下面以MobileNetV1为例,介绍使用训练后量化方法产出量化模型。关于训练后量化的原理和详细使用方法,请参考[文档](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)
> 该示例的代码放在[models/PaddleSlim/quant_low_level_api/](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)目录下。如果需要执行该示例,首先clone下来[models](https://github.com/PaddlePaddle/models.git),安装具有训练后量化功能的PaddlePaddle,然后执行[run_post_training_quanzation.sh](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/quant_low_level_api/run_post_training_quanzation.sh) 脚本,最后量化模型保存在`mobilenetv1_int8_model`目录下
> 该示例的代码放在[models/PaddleSlim/quant_low_level_api/](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)目录下。如果需要执行该示例,首先clone下来[models](https://github.com/PaddlePaddle/models.git),安装具有训练后量化功能的PaddlePaddle。因为目前Lite支持支持对conv2d、depthwise_conv2d和mul量化,所以修改[run_post_training_quanzation.sh](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/quant_low_level_api/run_post_training_quanzation.sh) 脚本,设置is_full_quantize=False,然后执行该脚本;执行结束后,量化模型保存在`mobilenetv1_int8_model`目录下。下面介绍详细步骤
1)**准备模型和校准数据**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册