Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1949fb0c
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1949fb0c
编写于
12月 30, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pooling2x2 neon implementation
上级
2bbf01d1
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
870 addition
and
35 deletion
+870
-35
src/operators/kernel/arm/pool_kernel.cpp
src/operators/kernel/arm/pool_kernel.cpp
+4
-2
src/operators/kernel/central-arm-func/pool_arm_func.h
src/operators/kernel/central-arm-func/pool_arm_func.h
+19
-2
src/operators/math/depthwise_conv5x5.cpp
src/operators/math/depthwise_conv5x5.cpp
+6
-7
src/operators/math/pooling2x2.cpp
src/operators/math/pooling2x2.cpp
+790
-0
test/operators/test_pool_op.cpp
test/operators/test_pool_op.cpp
+51
-24
未找到文件。
src/operators/kernel/arm/pool_kernel.cpp
浏览文件 @
1949fb0c
...
@@ -15,7 +15,8 @@ limitations under the License. */
...
@@ -15,7 +15,8 @@ limitations under the License. */
#ifdef POOL_OP
#ifdef POOL_OP
#include "operators/kernel/pool_kernel.h"
#include "operators/kernel/pool_kernel.h"
#include "../central-arm-func/pool_arm_func.h"
#include "operators/kernel/central-arm-func/pool_arm_func.h"
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
...
@@ -28,7 +29,8 @@ template <>
...
@@ -28,7 +29,8 @@ template <>
void
PoolKernel
<
CPU
,
float
>::
Compute
(
const
PoolParam
<
CPU
>
&
param
)
{
void
PoolKernel
<
CPU
,
float
>::
Compute
(
const
PoolParam
<
CPU
>
&
param
)
{
PoolCompute
<
float
>
(
param
);
PoolCompute
<
float
>
(
param
);
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
#endif
#endif
// POOL_OP
src/operators/kernel/central-arm-func/pool_arm_func.h
浏览文件 @
1949fb0c
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#ifdef POOL_OP
#ifdef POOL_OP
#pragma once
#pragma once
#include <string>
#include <string>
...
@@ -54,8 +55,24 @@ void PoolCompute(const PoolParam<CPU> ¶m) {
...
@@ -54,8 +55,24 @@ void PoolCompute(const PoolParam<CPU> ¶m) {
}
else
{
}
else
{
math
::
Pooling
<
AVG
>
()(
*
input
,
ksize
,
strides
,
paddings
,
output
);
math
::
Pooling
<
AVG
>
()(
*
input
,
ksize
,
strides
,
paddings
,
output
);
}
}
}
}
else
if
(
ksize
[
0
]
==
2
&&
ksize
[
0
]
==
ksize
[
1
])
{
if
(
pooling_type
==
"max"
&&
strides
[
0
]
==
strides
[
1
])
{
if
(
strides
[
0
]
==
1
)
{
math
::
Pooling2x2
<
MAX
,
1
>
()(
*
input
,
paddings
,
output
);
}
else
if
(
strides
[
0
]
==
2
)
{
math
::
Pooling2x2
<
MAX
,
2
>
()(
*
input
,
paddings
,
output
);
}
else
{
}
else
{
// Others
math
::
Pooling
<
MAX
>
()(
*
input
,
ksize
,
strides
,
paddings
,
output
);
}
}
else
if
(
pooling_type
==
"avg"
&&
strides
[
0
]
==
strides
[
1
])
{
if
(
strides
[
0
]
==
1
)
{
math
::
Pooling2x2
<
AVG
,
1
>
()(
*
input
,
paddings
,
output
);
}
else
if
(
strides
[
0
]
==
2
)
{
math
::
Pooling2x2
<
AVG
,
2
>
()(
*
input
,
paddings
,
output
);
}
else
{
math
::
Pooling
<
AVG
>
()(
*
input
,
ksize
,
strides
,
paddings
,
output
);
}
}
}
}
else
{
}
else
{
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
...
...
src/operators/math/depthwise_conv5x5.cpp
浏览文件 @
1949fb0c
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#if defined(__ARM_NEON__) && !defined(__aarch64__)
#if defined(__ARM_NEON__) && !defined(__aarch64__)
#include "operators/math/depthwise_conv5x5.h"
#include "operators/math/depthwise_conv5x5.h"
...
@@ -81,7 +79,6 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
...
@@ -81,7 +79,6 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
int
valid_w_start
=
(
padding_w
+
Stride_w
-
1
)
/
Stride_w
;
int
valid_w_start
=
(
padding_w
+
Stride_w
-
1
)
/
Stride_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w_end
=
output_w
-
valid_w_start
;
float
*
output_ptr
=
output
+
h_output
*
output_w
;
float
*
output_ptr
=
output
+
h_output
*
output_w
;
// border left
// border left
DEPTHWISE_CONV_NORMAL_BORDER
(
0
,
valid_w_start
)
DEPTHWISE_CONV_NORMAL_BORDER
(
0
,
valid_w_start
)
...
@@ -111,6 +108,8 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
...
@@ -111,6 +108,8 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
_sum
=
vdupq_n_f32
(
0.
f
);
_sum
=
vdupq_n_f32
(
0.
f
);
int
remain_start
=
valid_w_start
+
(
output_tiles
<<
2
);
int
remain_start
=
valid_w_start
+
(
output_tiles
<<
2
);
int
input_w_offset
=
remain_start
*
Stride_w
-
padding_w
;
int
input_w_offset
=
remain_start
*
Stride_w
-
padding_w
;
float
*
output_ptr0
=
output_ptr
+
remain_start
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
int
index
=
h_in
-
h_in_start
;
Depth5x5NormalRowLoadInput
<
Stride_w
>
(
Depth5x5NormalRowLoadInput
<
Stride_w
>
(
...
@@ -123,14 +122,14 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
...
@@ -123,14 +122,14 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
}
}
switch
(
remain
)
{
switch
(
remain
)
{
case
1
:
case
1
:
vst1_lane_f32
(
output_ptr
+
remain_start
,
vget_low_f32
(
_sum
),
0
);
vst1_lane_f32
(
output_ptr
0
,
vget_low_f32
(
_sum
),
0
);
break
;
break
;
case
2
:
case
2
:
vst1_f32
(
output_ptr
+
remain_start
,
vget_low_f32
(
_sum
));
vst1_f32
(
output_ptr
0
,
vget_low_f32
(
_sum
));
break
;
break
;
case
3
:
case
3
:
vst1_f32
(
output_ptr
+
remain_start
,
vget_low_f32
(
_sum
));
vst1_f32
(
output_ptr
0
,
vget_low_f32
(
_sum
));
vst1_lane_f32
(
output_ptr
+
remain_start
+
2
,
vget_high_f32
(
_sum
),
0
);
vst1_lane_f32
(
output_ptr
0
+
2
,
vget_high_f32
(
_sum
),
0
);
break
;
break
;
}
}
}
}
...
...
src/operators/math/pooling2x2.cpp
0 → 100644
浏览文件 @
1949fb0c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
#include <arm_neon.h>
#include "operators/math/pooling.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
#define POOLING2X2_NORMAL_BORDER(start, end) \
for (int w = start; w < end; ++w) { \
const int w_in_start = -padding_w + w * Stride; \
const int w_in_end = w_in_start + 2; \
const int w_start = w_in_start > 0 ? w_in_start : 0; \
const int w_end = w_in_end < input_w ? w_in_end : input_w; \
PoolingVal<P> val; \
for (int h_in = h_start; h_in < h_end; ++h_in) { \
for (int w_in = w_start; w_in < w_end; ++w_in) { \
val += input[h_in * input_w + w_in]; \
} \
} \
output_ptr[w] = val.Value(); \
}
template
<
PoolingType
P
,
int
Stride
=
1
>
struct
Pooling2x2NormalRowLoadInput
{
inline
void
operator
()(
const
float
*
input
,
float32x4_t
*
x0
,
float32x4_t
*
x1
)
{
x0
[
0
]
=
vld1q_f32
(
input
);
x0
[
1
]
=
vld1q_f32
(
input
+
4
);
x1
[
0
]
=
vextq_f32
(
x0
[
0
],
x0
[
1
],
1
);
x1
[
1
]
=
vextq_f32
(
x0
[
1
],
x0
[
1
],
1
);
}
};
template
<
PoolingType
P
>
struct
Pooling2x2NormalRowLoadInput
<
P
,
2
>
{
inline
void
operator
()(
const
float
*
input
,
float32x4_t
*
x0
,
float32x4_t
*
x1
)
{
float32x4x2_t
t0
=
vld2q_f32
(
input
);
float32x4x2_t
t1
=
vld2q_f32
(
input
+
8
);
x0
[
0
]
=
t0
.
val
[
0
];
x0
[
1
]
=
t1
.
val
[
0
];
x1
[
0
]
=
t0
.
val
[
1
];
x1
[
1
]
=
t1
.
val
[
1
];
}
};
// TODO(hjchen2): To optimize Pooling2x2NormalRow
template
<
PoolingType
P
,
int
Stride
>
inline
void
Pooling2x2NormalRow
(
const
float
*
input
,
const
int
h_output
,
const
int
input_h
,
const
int
input_w
,
const
int
padding_h
,
const
int
padding_w
,
const
int
output_w
,
float
*
output
)
{
const
int
h_in_start
=
-
padding_h
+
h_output
*
Stride
;
const
int
h_in_end
=
h_in_start
+
2
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
h_end
=
h_in_end
<
input_h
?
h_in_end
:
input_h
;
float
*
output_ptr
=
output
+
h_output
*
output_w
;
if
(
h_end
-
h_start
<=
0
)
{
memset
(
output_ptr
,
0
,
output_w
*
sizeof
(
float
));
return
;
}
const
int
valid_w_start
=
(
padding_w
+
Stride
-
1
)
/
Stride
;
const
int
valid_w_end
=
(
input_w
+
padding_w
-
2
)
/
Stride
+
1
;
const
int
valid_w
=
valid_w_end
-
valid_w_start
;
// border left
POOLING2X2_NORMAL_BORDER
(
0
,
valid_w_start
)
// valid w
Pooling2x2NormalRowLoadInput
<
P
,
Stride
>
load_input
;
int
output_tiles
=
valid_w
/
6
;
int
output_tiles_w
=
output_tiles
*
6
;
float32x4_t
x0
[
2
],
x1
[
2
],
y0
[
2
];
float32x4_t
post
=
vdupq_n_f32
(
1.
f
/
(
2
*
(
h_end
-
h_start
)));
for
(
int
w
=
0
;
w
<
output_tiles_w
;
w
+=
6
)
{
int
output_offset
=
valid_w_start
+
w
;
int
input_w_offset
=
output_offset
*
Stride
-
padding_w
;
y0
[
0
]
=
vPoolInitq_f32
<
P
>
();
y0
[
1
]
=
vPoolInitq_f32
<
P
>
();
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
load_input
(
input
+
h_in
*
input_w
+
input_w_offset
,
x0
,
x1
);
y0
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
[
0
],
x0
[
0
]);
y0
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
[
0
],
x1
[
0
]);
y0
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
[
1
],
x0
[
1
]);
y0
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
[
1
],
x1
[
1
]);
}
y0
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
[
0
],
post
);
y0
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
[
1
],
post
);
vst1q_f32
(
output_ptr
+
output_offset
,
y0
[
0
]);
vst1_f32
(
output_ptr
+
output_offset
+
4
,
vget_low_f32
(
y0
[
1
]));
}
// remain valid w
int
remain
=
valid_w
-
output_tiles_w
;
if
(
remain
>
0
)
{
int
remain_start
=
valid_w_start
+
output_tiles_w
;
int
input_w_offset
=
remain_start
*
Stride
-
padding_w
;
float
*
output_ptr0
=
output_ptr
+
remain_start
;
y0
[
0
]
=
vPoolInitq_f32
<
P
>
();
y0
[
1
]
=
vPoolInitq_f32
<
P
>
();
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
load_input
(
input
+
h_in
*
input_w
+
input_w_offset
,
x0
,
x1
);
y0
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
[
0
],
x0
[
0
]);
y0
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
[
0
],
x1
[
0
]);
y0
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
[
1
],
x0
[
1
]);
y0
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
[
1
],
x1
[
1
]);
}
y0
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
[
0
],
post
);
y0
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
[
1
],
post
);
switch
(
remain
)
{
case
1
:
vst1q_lane_f32
(
output_ptr0
,
y0
[
0
],
0
);
break
;
case
2
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
[
0
]));
break
;
case
3
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
[
0
]));
vst1q_lane_f32
(
output_ptr0
+
2
,
y0
[
0
],
2
);
break
;
case
4
:
vst1q_f32
(
output_ptr0
,
y0
[
0
]);
break
;
case
5
:
vst1q_f32
(
output_ptr0
,
y0
[
0
]);
vst1q_lane_f32
(
output_ptr0
+
4
,
y0
[
1
],
0
);
break
;
}
}
// border right
POOLING2X2_NORMAL_BORDER
(
valid_w_end
,
output_w
)
}
template
<
PoolingType
P
>
struct
Pooling2x2
<
P
,
1
>
{
inline
void
operator
()(
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
float
*
input_data
=
input
.
data
<
float
>
();
float
*
output_data
=
output
->
mutable_data
<
float
>
();
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
int
valid_h_start
=
padding_h
;
int
valid_h_end
=
output_h
-
valid_h_start
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
padding_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
#pragma omp parallel for collapse(2)
for
(
int
batch
=
0
;
batch
<
output
->
dims
()[
0
];
++
batch
)
{
for
(
int
c
=
0
;
c
<
output
->
dims
()[
1
];
++
c
)
{
int
channel
=
batch
*
output
->
dims
()[
1
]
+
c
;
const
float
*
input_ptr
=
input_data
+
channel
*
image_size
;
float
*
output_ptr
=
output_data
+
channel
*
out_image_size
;
// top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
Pooling2x2NormalRow
<
P
,
1
>
(
input_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// valid
int
output_w_tiles
=
valid_w
/
6
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
6
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
3
;
h
+=
4
)
{
const
float
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
float
*
input_ptr1
=
input_ptr0
+
input_w
;
const
float
*
input_ptr2
=
input_ptr1
+
input_w
;
const
float
*
input_ptr3
=
input_ptr2
+
input_w
;
const
float
*
input_ptr4
=
input_ptr3
+
input_w
;
float
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
float
*
output_ptr1
=
output_ptr0
+
output_w
;
float
*
output_ptr2
=
output_ptr1
+
output_w
;
float
*
output_ptr3
=
output_ptr2
+
output_w
;
// pad left
if
(
padding_w
)
{
for
(
int
w
=
valid_w_start
-
1
;
w
>=
0
;
--
w
)
{
int
padding
=
padding_w
-
w
;
if
(
padding
>=
2
)
{
output_ptr0
[
w
]
=
0.
f
;
output_ptr1
[
w
]
=
0.
f
;
output_ptr2
[
w
]
=
0.
f
;
output_ptr3
[
w
]
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
float
acc1
=
PoolPre
<
P
>
(
*
input_ptr1
,
*
input_ptr2
);
float
acc2
=
PoolPre
<
P
>
(
*
input_ptr2
,
*
input_ptr3
);
float
acc3
=
PoolPre
<
P
>
(
*
input_ptr3
,
*
input_ptr4
);
output_ptr0
[
w
]
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
output_ptr1
[
w
]
=
PoolPost
<
P
>
(
acc1
,
0.5
f
);
output_ptr2
[
w
]
=
PoolPost
<
P
>
(
acc2
,
0.5
f
);
output_ptr3
[
w
]
=
PoolPost
<
P
>
(
acc3
,
0.5
f
);
}
}
output_ptr0
+=
valid_w_start
;
output_ptr1
+=
valid_w_start
;
output_ptr2
+=
valid_w_start
;
output_ptr3
+=
valid_w_start
;
}
// valid
float32x4x2_t
x0
,
x1
,
q0
;
float32x4x2_t
y0
,
y1
;
float32x4_t
post
=
vdupq_n_f32
(
0.25
f
);
for
(
int
loop
=
0
;
loop
<
output_w_tiles
;
++
loop
)
{
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr0
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr0
+
4
);
x1
.
val
[
0
]
=
vld1q_f32
(
input_ptr1
);
x1
.
val
[
1
]
=
vld1q_f32
(
input_ptr1
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
1
],
q0
.
val
[
1
]);
q0
.
val
[
0
]
=
vextq_f32
(
x1
.
val
[
0
],
x1
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x1
.
val
[
1
],
x1
.
val
[
1
],
1
);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
0
],
q0
.
val
[
0
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
1
],
q0
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
y1
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
y1
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
0
],
post
);
y0
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
1
],
post
);
vst1q_f32
(
output_ptr0
,
y0
.
val
[
0
]);
vst1_f32
(
output_ptr0
+
4
,
vget_low_f32
(
y0
.
val
[
1
]));
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr2
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr2
+
4
);
x1
.
val
[
0
]
=
vld1q_f32
(
input_ptr3
);
x1
.
val
[
1
]
=
vld1q_f32
(
input_ptr3
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
1
],
q0
.
val
[
1
]);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
0
],
y0
.
val
[
0
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
1
],
y0
.
val
[
1
]);
y1
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y1
.
val
[
0
],
post
);
y1
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y1
.
val
[
1
],
post
);
vst1q_f32
(
output_ptr1
,
y1
.
val
[
0
]);
vst1_f32
(
output_ptr1
+
4
,
vget_low_f32
(
y1
.
val
[
1
]));
q0
.
val
[
0
]
=
vextq_f32
(
x1
.
val
[
0
],
x1
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x1
.
val
[
1
],
x1
.
val
[
1
],
1
);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
0
],
q0
.
val
[
0
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
1
],
q0
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
y1
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
y1
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
0
],
post
);
y0
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
1
],
post
);
vst1q_f32
(
output_ptr2
,
y0
.
val
[
0
]);
vst1_f32
(
output_ptr2
+
4
,
vget_low_f32
(
y0
.
val
[
1
]));
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr4
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr4
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
0
],
x0
.
val
[
0
]);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
0
],
q0
.
val
[
0
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
1
],
x0
.
val
[
1
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
1
],
q0
.
val
[
1
]);
y1
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y1
.
val
[
0
],
post
);
y1
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y1
.
val
[
1
],
post
);
vst1q_f32
(
output_ptr3
,
y1
.
val
[
0
]);
vst1_f32
(
output_ptr3
+
4
,
vget_low_f32
(
y1
.
val
[
1
]));
input_ptr0
+=
6
;
input_ptr1
+=
6
;
input_ptr2
+=
6
;
input_ptr3
+=
6
;
input_ptr4
+=
6
;
output_ptr0
+=
6
;
output_ptr1
+=
6
;
output_ptr2
+=
6
;
output_ptr3
+=
6
;
}
// remain width
if
(
output_w_remain
>
0
)
{
float32x4x2_t
y2
,
y3
;
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr0
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr0
+
4
);
x1
.
val
[
0
]
=
vld1q_f32
(
input_ptr1
);
x1
.
val
[
1
]
=
vld1q_f32
(
input_ptr1
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
1
],
q0
.
val
[
1
]);
q0
.
val
[
0
]
=
vextq_f32
(
x1
.
val
[
0
],
x1
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x1
.
val
[
1
],
x1
.
val
[
1
],
1
);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
0
],
q0
.
val
[
0
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
1
],
q0
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
y1
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
y1
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
0
],
post
);
y0
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
1
],
post
);
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr2
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr2
+
4
);
x1
.
val
[
0
]
=
vld1q_f32
(
input_ptr3
);
x1
.
val
[
1
]
=
vld1q_f32
(
input_ptr3
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y2
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
q0
.
val
[
0
]);
y2
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
1
],
q0
.
val
[
1
]);
y1
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
0
],
y2
.
val
[
0
]);
y1
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y1
.
val
[
1
],
y2
.
val
[
1
]);
y1
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y1
.
val
[
0
],
post
);
y1
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y1
.
val
[
1
],
post
);
q0
.
val
[
0
]
=
vextq_f32
(
x1
.
val
[
0
],
x1
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x1
.
val
[
1
],
x1
.
val
[
1
],
1
);
y3
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
0
],
q0
.
val
[
0
]);
y3
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x1
.
val
[
1
],
q0
.
val
[
1
]);
y2
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y2
.
val
[
0
],
y3
.
val
[
0
]);
y2
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y2
.
val
[
1
],
y3
.
val
[
1
]);
y2
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y2
.
val
[
0
],
post
);
y2
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y2
.
val
[
1
],
post
);
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr4
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr4
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y3
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y3
.
val
[
0
],
x0
.
val
[
0
]);
y3
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y3
.
val
[
0
],
q0
.
val
[
0
]);
y3
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y3
.
val
[
1
],
x0
.
val
[
1
]);
y3
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y3
.
val
[
1
],
q0
.
val
[
1
]);
y3
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y3
.
val
[
0
],
post
);
y3
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y3
.
val
[
1
],
post
);
switch
(
output_w_remain
)
{
case
1
:
vst1q_lane_f32
(
output_ptr0
,
y0
.
val
[
0
],
0
);
vst1q_lane_f32
(
output_ptr1
,
y1
.
val
[
0
],
0
);
vst1q_lane_f32
(
output_ptr2
,
y2
.
val
[
0
],
0
);
vst1q_lane_f32
(
output_ptr3
,
y3
.
val
[
0
],
0
);
break
;
case
2
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
.
val
[
0
]));
vst1_f32
(
output_ptr1
,
vget_low_f32
(
y1
.
val
[
0
]));
vst1_f32
(
output_ptr2
,
vget_low_f32
(
y2
.
val
[
0
]));
vst1_f32
(
output_ptr3
,
vget_low_f32
(
y3
.
val
[
0
]));
break
;
case
3
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
.
val
[
0
]));
vst1_f32
(
output_ptr1
,
vget_low_f32
(
y1
.
val
[
0
]));
vst1_f32
(
output_ptr2
,
vget_low_f32
(
y2
.
val
[
0
]));
vst1_f32
(
output_ptr3
,
vget_low_f32
(
y3
.
val
[
0
]));
vst1q_lane_f32
(
output_ptr0
+
2
,
y0
.
val
[
0
],
2
);
vst1q_lane_f32
(
output_ptr1
+
2
,
y1
.
val
[
0
],
2
);
vst1q_lane_f32
(
output_ptr2
+
2
,
y2
.
val
[
0
],
2
);
vst1q_lane_f32
(
output_ptr3
+
2
,
y3
.
val
[
0
],
2
);
break
;
case
4
:
vst1q_f32
(
output_ptr0
,
y0
.
val
[
0
]);
vst1q_f32
(
output_ptr1
,
y1
.
val
[
0
]);
vst1q_f32
(
output_ptr2
,
y2
.
val
[
0
]);
vst1q_f32
(
output_ptr3
,
y3
.
val
[
0
]);
break
;
case
5
:
vst1q_f32
(
output_ptr0
,
y0
.
val
[
0
]);
vst1q_f32
(
output_ptr1
,
y1
.
val
[
0
]);
vst1q_f32
(
output_ptr2
,
y2
.
val
[
0
]);
vst1q_f32
(
output_ptr3
,
y3
.
val
[
0
]);
vst1q_lane_f32
(
output_ptr0
+
4
,
y0
.
val
[
1
],
0
);
vst1q_lane_f32
(
output_ptr1
+
4
,
y1
.
val
[
1
],
0
);
vst1q_lane_f32
(
output_ptr2
+
4
,
y2
.
val
[
1
],
0
);
vst1q_lane_f32
(
output_ptr3
+
4
,
y3
.
val
[
1
],
0
);
break
;
}
input_ptr0
+=
output_w_remain
;
input_ptr1
+=
output_w_remain
;
input_ptr2
+=
output_w_remain
;
input_ptr3
+=
output_w_remain
;
input_ptr4
+=
output_w_remain
;
output_ptr0
+=
output_w_remain
;
output_ptr1
+=
output_w_remain
;
output_ptr2
+=
output_w_remain
;
output_ptr3
+=
output_w_remain
;
}
// pad right
if
(
padding_w
)
{
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
int
padding
=
w
+
2
-
(
padding_w
+
input_w
);
if
(
padding
>=
2
)
{
*
output_ptr0
=
0.
f
;
*
output_ptr1
=
0.
f
;
*
output_ptr2
=
0.
f
;
*
output_ptr3
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
float
acc1
=
PoolPre
<
P
>
(
*
input_ptr1
,
*
input_ptr2
);
float
acc2
=
PoolPre
<
P
>
(
*
input_ptr2
,
*
input_ptr3
);
float
acc3
=
PoolPre
<
P
>
(
*
input_ptr3
,
*
input_ptr4
);
*
output_ptr0
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
*
output_ptr1
=
PoolPost
<
P
>
(
acc1
,
0.5
f
);
*
output_ptr2
=
PoolPost
<
P
>
(
acc2
,
0.5
f
);
*
output_ptr3
=
PoolPost
<
P
>
(
acc3
,
0.5
f
);
}
output_ptr0
++
;
output_ptr1
++
;
output_ptr2
++
;
output_ptr3
++
;
}
}
}
// remain height
int
start_h
=
valid_h_start
+
(
valid_h
&
0xFFFC
);
for
(
int
h
=
start_h
;
h
<
valid_h_end
;
++
h
)
{
const
float
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
float
*
input_ptr1
=
input_ptr0
+
input_w
;
float
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
// pad left
if
(
padding_w
)
{
for
(
int
w
=
valid_w_start
-
1
;
w
>=
0
;
--
w
)
{
int
padding
=
padding_w
-
w
;
if
(
padding
>=
2
)
{
output_ptr0
[
w
]
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
output_ptr0
[
w
]
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
}
}
output_ptr0
+=
valid_w_start
;
}
// valid
float32x4x2_t
x0
,
x1
,
q0
,
y0
;
float32x4_t
post
=
vdupq_n_f32
(
0.25
f
);
for
(
int
loop
=
0
;
loop
<
output_w_tiles
;
++
loop
)
{
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr0
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr0
+
4
);
x1
.
val
[
0
]
=
vld1q_f32
(
input_ptr1
);
x1
.
val
[
1
]
=
vld1q_f32
(
input_ptr1
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
1
],
q0
.
val
[
1
]);
q0
.
val
[
0
]
=
vextq_f32
(
x1
.
val
[
0
],
x1
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x1
.
val
[
1
],
x1
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
x1
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
x1
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
q0
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
0
],
post
);
y0
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
1
],
post
);
vst1q_f32
(
output_ptr0
,
y0
.
val
[
0
]);
vst1_f32
(
output_ptr0
+
4
,
vget_low_f32
(
y0
.
val
[
1
]));
input_ptr0
+=
6
;
input_ptr1
+=
6
;
output_ptr0
+=
6
;
}
// remain width
if
(
output_w_remain
>
0
)
{
x0
.
val
[
0
]
=
vld1q_f32
(
input_ptr0
);
x0
.
val
[
1
]
=
vld1q_f32
(
input_ptr0
+
4
);
x1
.
val
[
0
]
=
vld1q_f32
(
input_ptr1
);
x1
.
val
[
1
]
=
vld1q_f32
(
input_ptr1
+
4
);
q0
.
val
[
0
]
=
vextq_f32
(
x0
.
val
[
0
],
x0
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x0
.
val
[
1
],
x0
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
1
],
q0
.
val
[
1
]);
q0
.
val
[
0
]
=
vextq_f32
(
x1
.
val
[
0
],
x1
.
val
[
1
],
1
);
q0
.
val
[
1
]
=
vextq_f32
(
x1
.
val
[
1
],
x1
.
val
[
1
],
1
);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
x1
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
x1
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
0
],
q0
.
val
[
0
]);
y0
.
val
[
1
]
=
vPoolPreq_f32
<
P
>
(
y0
.
val
[
1
],
q0
.
val
[
1
]);
y0
.
val
[
0
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
0
],
post
);
y0
.
val
[
1
]
=
vPoolPostq_f32
<
P
>
(
y0
.
val
[
1
],
post
);
switch
(
output_w_remain
)
{
case
1
:
vst1q_lane_f32
(
output_ptr0
,
y0
.
val
[
0
],
0
);
break
;
case
2
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
.
val
[
0
]));
break
;
case
3
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
.
val
[
0
]));
vst1q_lane_f32
(
output_ptr0
+
2
,
y0
.
val
[
0
],
2
);
break
;
case
4
:
vst1q_f32
(
output_ptr0
,
y0
.
val
[
0
]);
break
;
case
5
:
vst1q_f32
(
output_ptr0
,
y0
.
val
[
0
]);
vst1q_lane_f32
(
output_ptr0
+
4
,
y0
.
val
[
1
],
0
);
break
;
}
input_ptr0
+=
output_w_remain
;
input_ptr1
+=
output_w_remain
;
output_ptr0
+=
output_w_remain
;
}
// pad right
if
(
padding_w
)
{
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
int
padding
=
w
+
2
-
(
padding_w
+
input_w
);
if
(
padding
>=
2
)
{
*
output_ptr0
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
*
output_ptr0
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
}
output_ptr0
++
;
}
}
}
// bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
Pooling2x2NormalRow
<
P
,
1
>
(
input_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
}
}
}
};
template
<
PoolingType
P
>
struct
Pooling2x2
<
P
,
2
>
{
inline
void
operator
()(
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
float
*
input_data
=
input
.
data
<
float
>
();
float
*
output_data
=
output
->
mutable_data
<
float
>
();
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
int
valid_h_start
=
(
padding_h
+
1
)
/
2
;
int
valid_h_end
=
(
input_h
+
padding_h
)
/
2
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
(
padding_w
+
1
)
/
2
;
int
valid_w_end
=
(
input_w
+
padding_w
)
/
2
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
bool
ceil_mode
=
(((
input_h
+
2
*
padding_h
)
/
2
)
<
output_h
)
||
(((
input_w
+
2
*
padding_w
)
/
2
)
<
output_w
);
int
padding_b
=
padding_h
+
(
ceil_mode
?
2
*
output_h
-
(
input_h
+
2
*
padding_h
)
:
0
);
int
padding_r
=
padding_w
+
(
ceil_mode
?
2
*
output_w
-
(
input_w
+
2
*
padding_w
)
:
0
);
#pragma omp parallel for collapse(2)
for
(
int
batch
=
0
;
batch
<
output
->
dims
()[
0
];
++
batch
)
{
for
(
int
c
=
0
;
c
<
output
->
dims
()[
1
];
++
c
)
{
int
channel
=
batch
*
output
->
dims
()[
1
]
+
c
;
const
float
*
input_ptr
=
input_data
+
channel
*
image_size
;
float
*
output_ptr
=
output_data
+
channel
*
out_image_size
;
// top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
Pooling2x2NormalRow
<
P
,
2
>
(
input_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// valid
int
output_w_tiles
=
valid_w
/
4
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
4
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
1
;
h
+=
2
)
{
const
float
*
input_ptr0
=
input_ptr
+
(
2
*
h
-
padding_h
)
*
input_w
;
const
float
*
input_ptr1
=
input_ptr0
+
input_w
;
const
float
*
input_ptr2
=
input_ptr1
+
input_w
;
const
float
*
input_ptr3
=
input_ptr2
+
input_w
;
float
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
float
*
output_ptr1
=
output_ptr0
+
output_w
;
// pad left
if
(
padding_w
)
{
for
(
int
w
=
valid_w_start
-
1
;
w
>=
0
;
--
w
)
{
int
padding
=
padding_w
-
w
*
2
;
if
(
padding
>=
2
)
{
output_ptr0
[
w
]
=
0.
f
;
output_ptr1
[
w
]
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
float
acc1
=
PoolPre
<
P
>
(
*
input_ptr2
,
*
input_ptr3
);
output_ptr0
[
w
]
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
output_ptr1
[
w
]
=
PoolPost
<
P
>
(
acc1
,
0.5
f
);
}
}
input_ptr0
+=
(
padding_w
&
0x1
);
input_ptr1
+=
(
padding_w
&
0x1
);
input_ptr2
+=
(
padding_w
&
0x1
);
input_ptr3
+=
(
padding_w
&
0x1
);
output_ptr0
+=
valid_w_start
;
output_ptr1
+=
valid_w_start
;
}
// valid
float32x4x2_t
x0
,
x1
,
x2
,
x3
;
float32x4_t
y0
,
y1
;
float32x4_t
post
=
vdupq_n_f32
(
0.25
f
);
for
(
int
loop
=
0
;
loop
<
output_w_tiles
;
++
loop
)
{
x0
=
vld2q_f32
(
input_ptr0
);
x1
=
vld2q_f32
(
input_ptr1
);
x2
=
vld2q_f32
(
input_ptr2
);
x3
=
vld2q_f32
(
input_ptr3
);
y0
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
x0
.
val
[
1
]);
y1
=
vPoolPreq_f32
<
P
>
(
x2
.
val
[
0
],
x2
.
val
[
1
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
0
]);
y1
=
vPoolPreq_f32
<
P
>
(
y1
,
x3
.
val
[
0
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
1
]);
y1
=
vPoolPreq_f32
<
P
>
(
y1
,
x3
.
val
[
1
]);
y0
=
vPoolPostq_f32
<
P
>
(
y0
,
post
);
y1
=
vPoolPostq_f32
<
P
>
(
y1
,
post
);
vst1q_f32
(
output_ptr0
,
y0
);
vst1q_f32
(
output_ptr1
,
y1
);
input_ptr0
+=
8
;
input_ptr1
+=
8
;
input_ptr2
+=
8
;
input_ptr3
+=
8
;
output_ptr0
+=
4
;
output_ptr1
+=
4
;
}
// remain width
if
(
output_w_remain
>
0
)
{
x0
=
vld2q_f32
(
input_ptr0
);
x1
=
vld2q_f32
(
input_ptr1
);
x2
=
vld2q_f32
(
input_ptr2
);
x3
=
vld2q_f32
(
input_ptr3
);
y0
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
x0
.
val
[
1
]);
y1
=
vPoolPreq_f32
<
P
>
(
x2
.
val
[
0
],
x2
.
val
[
1
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
0
]);
y1
=
vPoolPreq_f32
<
P
>
(
y1
,
x3
.
val
[
0
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
1
]);
y1
=
vPoolPreq_f32
<
P
>
(
y1
,
x3
.
val
[
1
]);
y0
=
vPoolPostq_f32
<
P
>
(
y0
,
post
);
y1
=
vPoolPostq_f32
<
P
>
(
y1
,
post
);
switch
(
output_w_remain
)
{
case
1
:
vst1q_lane_f32
(
output_ptr0
,
y0
,
0
);
vst1q_lane_f32
(
output_ptr1
,
y1
,
0
);
break
;
case
2
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
));
vst1_f32
(
output_ptr1
,
vget_low_f32
(
y1
));
break
;
case
3
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
));
vst1q_lane_f32
(
output_ptr0
+
2
,
y0
,
2
);
vst1_f32
(
output_ptr1
,
vget_low_f32
(
y1
));
vst1q_lane_f32
(
output_ptr1
+
2
,
y1
,
2
);
break
;
}
input_ptr0
+=
2
*
output_w_remain
;
input_ptr1
+=
2
*
output_w_remain
;
input_ptr2
+=
2
*
output_w_remain
;
input_ptr3
+=
2
*
output_w_remain
;
output_ptr0
+=
output_w_remain
;
output_ptr1
+=
output_w_remain
;
}
// pad right
if
(
padding_r
)
{
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
int
padding
=
2
*
w
+
2
-
(
padding_w
+
input_w
);
if
(
padding
>=
2
)
{
*
output_ptr0
=
0.
f
;
*
output_ptr1
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
float
acc1
=
PoolPre
<
P
>
(
*
input_ptr2
,
*
input_ptr3
);
*
output_ptr0
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
*
output_ptr1
=
PoolPost
<
P
>
(
acc1
,
0.5
f
);
}
output_ptr0
++
;
output_ptr1
++
;
}
}
}
// remain height
int
start_h
=
valid_h_start
+
(
valid_h
&
0xfffe
);
for
(
int
h
=
start_h
;
h
<
valid_h_end
;
++
h
)
{
const
float
*
input_ptr0
=
input_ptr
+
(
2
*
h
-
padding_h
)
*
input_w
;
const
float
*
input_ptr1
=
input_ptr0
+
input_w
;
float
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
// pad left
if
(
padding_w
)
{
for
(
int
w
=
valid_w_start
-
1
;
w
>=
0
;
--
w
)
{
int
padding
=
padding_w
-
2
*
w
;
if
(
padding
>=
2
)
{
output_ptr0
[
w
]
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
output_ptr0
[
w
]
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
}
}
input_ptr0
+=
(
padding_w
&
0x1
);
input_ptr1
+=
(
padding_w
&
0x1
);
output_ptr0
+=
valid_w_start
;
}
// valid
float32x4x2_t
x0
,
x1
;
float32x4_t
y0
;
float32x4_t
post
=
vdupq_n_f32
(
0.25
f
);
for
(
int
loop
=
0
;
loop
<
output_w_tiles
;
++
loop
)
{
x0
=
vld2q_f32
(
input_ptr0
);
x1
=
vld2q_f32
(
input_ptr1
);
y0
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
x0
.
val
[
1
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
0
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
1
]);
y0
=
vPoolPostq_f32
<
P
>
(
y0
,
post
);
vst1q_f32
(
output_ptr0
,
y0
);
input_ptr0
+=
8
;
input_ptr1
+=
8
;
output_ptr0
+=
4
;
}
// remain width
if
(
output_w_remain
>
0
)
{
x0
=
vld2q_f32
(
input_ptr0
);
x1
=
vld2q_f32
(
input_ptr1
);
y0
=
vPoolPreq_f32
<
P
>
(
x0
.
val
[
0
],
x0
.
val
[
1
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
0
]);
y0
=
vPoolPreq_f32
<
P
>
(
y0
,
x1
.
val
[
1
]);
y0
=
vPoolPostq_f32
<
P
>
(
y0
,
post
);
switch
(
output_w_remain
)
{
case
1
:
vst1q_lane_f32
(
output_ptr0
,
y0
,
0
);
break
;
case
2
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
));
break
;
case
3
:
vst1_f32
(
output_ptr0
,
vget_low_f32
(
y0
));
vst1q_lane_f32
(
output_ptr0
+
2
,
y0
,
2
);
break
;
}
input_ptr0
+=
2
*
output_w_remain
;
input_ptr1
+=
2
*
output_w_remain
;
output_ptr0
+=
output_w_remain
;
}
// pad right
if
(
padding_r
)
{
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
int
padding
=
2
*
w
+
2
-
(
padding_w
+
input_w
);
if
(
padding
>=
2
)
{
*
output_ptr0
=
0.
f
;
}
else
{
float
acc0
=
PoolPre
<
P
>
(
*
input_ptr0
,
*
input_ptr1
);
*
output_ptr0
=
PoolPost
<
P
>
(
acc0
,
0.5
f
);
}
output_ptr0
++
;
}
}
}
// bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
Pooling2x2NormalRow
<
P
,
2
>
(
input_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
}
}
}
};
template
struct
Pooling2x2
<
MAX
,
1
>;
template
struct
Pooling2x2
<
AVG
,
1
>;
template
struct
Pooling2x2
<
MAX
,
2
>;
template
struct
Pooling2x2
<
AVG
,
2
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif // __ARM_NEON__
#endif // POOL_OP
test/operators/test_pool_op.cpp
浏览文件 @
1949fb0c
...
@@ -169,28 +169,55 @@ int main(int argc, char *argv[]) {
...
@@ -169,28 +169,55 @@ int main(int argc, char *argv[]) {
<<
"float, pooling_type=avg, kernel=3, pad=5, stride=2"
;
<<
"float, pooling_type=avg, kernel=3, pad=5, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
5
,
2
>
(
in_channels
,
in_height
,
in_width
);
paddle_mobile
::
TestPoolOp
<
1
,
3
,
5
,
2
>
(
in_channels
,
in_height
,
in_width
);
// // kernel = 5, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
// LOG(paddle_mobile::kLOG_INFO)
<<
"float, pooling_type=max, kernel=2, pad=0, stride=1"
;
// << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
paddle_mobile
::
TestPoolOp
<
0
,
2
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
);
// stride=1";
LOG
(
paddle_mobile
::
kLOG_INFO
)
// paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 1>(in_channels, in_height,
<<
"float, pooling_type=max, kernel=2, pad=1, stride=1"
;
// in_width);
paddle_mobile
::
TestPoolOp
<
0
,
2
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
);
// // kernel = 5, pad = 0, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
// LOG(paddle_mobile::kLOG_INFO)
<<
"float, pooling_type=max, kernel=2, pad=2, stride=1"
;
// << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
paddle_mobile
::
TestPoolOp
<
0
,
2
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
);
// stride=1";
LOG
(
paddle_mobile
::
kLOG_INFO
)
// paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 2>(in_channels, in_height,
<<
"float, pooling_type=max, kernel=2, pad=5, stride=1"
;
// in_width);
paddle_mobile
::
TestPoolOp
<
0
,
2
,
5
,
1
>
(
in_channels
,
in_height
,
in_width
);
// // kernel = 7, pad = 0, stride = 1
// LOG(paddle_mobile::kLOG_INFO)
LOG
(
paddle_mobile
::
kLOG_INFO
)
// << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
<<
"float, pooling_type=avg, kernel=2, pad=0, stride=1"
;
// stride=1";
paddle_mobile
::
TestPoolOp
<
1
,
2
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
);
// paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 1>(in_channels, in_height,
LOG
(
paddle_mobile
::
kLOG_INFO
)
// in_width);
<<
"float, pooling_type=avg, kernel=2, pad=1, stride=1"
;
// // kernel = 7, pad = 0, stride = 4
paddle_mobile
::
TestPoolOp
<
1
,
2
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
);
// LOG(paddle_mobile::kLOG_INFO)
LOG
(
paddle_mobile
::
kLOG_INFO
)
// << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
<<
"float, pooling_type=avg, kernel=2, pad=2, stride=1"
;
// stride=4";
paddle_mobile
::
TestPoolOp
<
1
,
2
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
);
// paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 4>(in_channels, in_height,
LOG
(
paddle_mobile
::
kLOG_INFO
)
// in_width);
<<
"float, pooling_type=avg, kernel=2, pad=5, stride=1"
;
paddle_mobile
::
TestPoolOp
<
1
,
2
,
5
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=2, pad=0, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
2
,
0
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=2, pad=1, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
2
,
1
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=2, pad=2, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
2
,
2
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=2, pad=5, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
2
,
5
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=2, pad=0, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
2
,
0
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=2, pad=1, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
2
,
1
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=2, pad=2, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
2
,
2
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=2, pad=5, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
2
,
5
,
2
>
(
in_channels
,
in_height
,
in_width
);
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录