提交 1949fb0c 编写于 作者: H hjchen2

Add pooling2x2 neon implementation

上级 2bbf01d1
......@@ -15,7 +15,8 @@ limitations under the License. */
#ifdef POOL_OP
#include "operators/kernel/pool_kernel.h"
#include "../central-arm-func/pool_arm_func.h"
#include "operators/kernel/central-arm-func/pool_arm_func.h"
namespace paddle_mobile {
namespace operators {
......@@ -28,7 +29,8 @@ template <>
void PoolKernel<CPU, float>::Compute(const PoolParam<CPU> &param) {
PoolCompute<float>(param);
}
} // namespace operators
} // namespace paddle_mobile
#endif
#endif // POOL_OP
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#pragma once
#include <string>
......@@ -54,8 +55,24 @@ void PoolCompute(const PoolParam<CPU> &param) {
} else {
math::Pooling<AVG>()(*input, ksize, strides, paddings, output);
}
} else {
// Others
}
} else if (ksize[0] == 2 && ksize[0] == ksize[1]) {
if (pooling_type == "max" && strides[0] == strides[1]) {
if (strides[0] == 1) {
math::Pooling2x2<MAX, 1>()(*input, paddings, output);
} else if (strides[0] == 2) {
math::Pooling2x2<MAX, 2>()(*input, paddings, output);
} else {
math::Pooling<MAX>()(*input, ksize, strides, paddings, output);
}
} else if (pooling_type == "avg" && strides[0] == strides[1]) {
if (strides[0] == 1) {
math::Pooling2x2<AVG, 1>()(*input, paddings, output);
} else if (strides[0] == 2) {
math::Pooling2x2<AVG, 2>()(*input, paddings, output);
} else {
math::Pooling<AVG>()(*input, ksize, strides, paddings, output);
}
}
} else {
if (pooling_type == "max") {
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#if defined(__ARM_NEON__) && !defined(__aarch64__)
#include "operators/math/depthwise_conv5x5.h"
......@@ -81,7 +79,6 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
int valid_w_start = (padding_w + Stride_w - 1) / Stride_w;
int valid_w_end = output_w - valid_w_start;
float *output_ptr = output + h_output * output_w;
// border left
DEPTHWISE_CONV_NORMAL_BORDER(0, valid_w_start)
......@@ -111,6 +108,8 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
_sum = vdupq_n_f32(0.f);
int remain_start = valid_w_start + (output_tiles << 2);
int input_w_offset = remain_start * Stride_w - padding_w;
float *output_ptr0 = output_ptr + remain_start;
for (int h_in = h_start; h_in < h_end; ++h_in) {
int index = h_in - h_in_start;
Depth5x5NormalRowLoadInput<Stride_w>(
......@@ -123,14 +122,14 @@ inline void DepthwiseConv5x5NormalRow(const float *input, const float *filter,
}
switch (remain) {
case 1:
vst1_lane_f32(output_ptr + remain_start, vget_low_f32(_sum), 0);
vst1_lane_f32(output_ptr0, vget_low_f32(_sum), 0);
break;
case 2:
vst1_f32(output_ptr + remain_start, vget_low_f32(_sum));
vst1_f32(output_ptr0, vget_low_f32(_sum));
break;
case 3:
vst1_f32(output_ptr + remain_start, vget_low_f32(_sum));
vst1_lane_f32(output_ptr + remain_start + 2, vget_high_f32(_sum), 0);
vst1_f32(output_ptr0, vget_low_f32(_sum));
vst1_lane_f32(output_ptr0 + 2, vget_high_f32(_sum), 0);
break;
}
}
......
此差异已折叠。
......@@ -169,28 +169,55 @@ int main(int argc, char *argv[]) {
<< "float, pooling_type=avg, kernel=3, pad=5, stride=2";
paddle_mobile::TestPoolOp<1, 3, 5, 2>(in_channels, in_height, in_width);
// // kernel = 5, pad = 0, stride = 1
// LOG(paddle_mobile::kLOG_INFO)
// << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
// stride=1";
// paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 1>(in_channels, in_height,
// in_width);
// // kernel = 5, pad = 0, stride = 2
// LOG(paddle_mobile::kLOG_INFO)
// << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
// stride=1";
// paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 2>(in_channels, in_height,
// in_width);
// // kernel = 7, pad = 0, stride = 1
// LOG(paddle_mobile::kLOG_INFO)
// << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
// stride=1";
// paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 1>(in_channels, in_height,
// in_width);
// // kernel = 7, pad = 0, stride = 4
// LOG(paddle_mobile::kLOG_INFO)
// << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
// stride=4";
// paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 4>(in_channels, in_height,
// in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=0, stride=1";
paddle_mobile::TestPoolOp<0, 2, 0, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=1, stride=1";
paddle_mobile::TestPoolOp<0, 2, 1, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=2, stride=1";
paddle_mobile::TestPoolOp<0, 2, 2, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=5, stride=1";
paddle_mobile::TestPoolOp<0, 2, 5, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=0, stride=1";
paddle_mobile::TestPoolOp<1, 2, 0, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=1, stride=1";
paddle_mobile::TestPoolOp<1, 2, 1, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=2, stride=1";
paddle_mobile::TestPoolOp<1, 2, 2, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=5, stride=1";
paddle_mobile::TestPoolOp<1, 2, 5, 1>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=0, stride=2";
paddle_mobile::TestPoolOp<0, 2, 0, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=1, stride=2";
paddle_mobile::TestPoolOp<0, 2, 1, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=2, stride=2";
paddle_mobile::TestPoolOp<0, 2, 2, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=max, kernel=2, pad=5, stride=2";
paddle_mobile::TestPoolOp<0, 2, 5, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=0, stride=2";
paddle_mobile::TestPoolOp<1, 2, 0, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=1, stride=2";
paddle_mobile::TestPoolOp<1, 2, 1, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=2, stride=2";
paddle_mobile::TestPoolOp<1, 2, 2, 2>(in_channels, in_height, in_width);
LOG(paddle_mobile::kLOG_INFO)
<< "float, pooling_type=avg, kernel=2, pad=5, stride=2";
paddle_mobile::TestPoolOp<1, 2, 5, 2>(in_channels, in_height, in_width);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册