Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
187bf7c5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
187bf7c5
编写于
12月 19, 2019
作者:
Y
yiicy
提交者:
GitHub
12月 19, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[ARM] change global pooling choose kernel policy, test=develop (#2602)
* [ARM] change global pooling choose kernel policy, test=develop
上级
2b066a60
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
39 addition
and
40 deletion
+39
-40
lite/core/program.cc
lite/core/program.cc
+3
-7
lite/kernels/arm/conv_compute.cc
lite/kernels/arm/conv_compute.cc
+10
-10
lite/kernels/arm/conv_depthwise.cc
lite/kernels/arm/conv_depthwise.cc
+6
-6
lite/kernels/arm/pool_compute.cc
lite/kernels/arm/pool_compute.cc
+13
-12
lite/kernels/arm/split_lod_tensor_compute.cc
lite/kernels/arm/split_lod_tensor_compute.cc
+1
-1
lite/kernels/arm/while_compute.h
lite/kernels/arm/while_compute.h
+3
-3
lite/tests/math/pool_compute_test.cc
lite/tests/math/pool_compute_test.cc
+3
-1
未找到文件。
lite/core/program.cc
浏览文件 @
187bf7c5
...
...
@@ -262,14 +262,10 @@ void Instruction::Run() {
if
(
op_
->
run_once
()
&&
has_run_
)
{
return
;
}
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
"kernel launch"
;
#endif
// VLOG(4) << "kernel launch";
op_
->
InferShape
();
#ifndef LITE_SHUTDOWN_LOG
VLOG
(
4
)
<<
">> Running kernel: "
<<
op_
->
op_info
()
->
Repr
()
<<
" on Target "
<<
TargetToStr
(
kernel_
->
target
());
#endif
// VLOG(4) << ">> Running kernel: " << op_->op_info()->Repr() << " on Target "
// << TargetToStr(kernel_->target());
kernel_
->
Launch
();
has_run_
=
true
;
}
...
...
lite/kernels/arm/conv_compute.cc
浏览文件 @
187bf7c5
...
...
@@ -65,20 +65,20 @@ void ConvCompute<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
no_dilation
&&
flag_dw
)
{
/// dw conv impl
impl_
=
new
DepthwiseConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"invoking dw conv"
;
//
VLOG(3) << "invoking dw conv";
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
stride
==
1
&&
kps_equal
&&
no_dilation
&&
pads_all_equal
)
{
/// winograd conv impl
impl_
=
new
WinogradConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"invoking winograd conv"
;
//
VLOG(3) << "invoking winograd conv";
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
stride
==
2
&&
chin
*
chout
<
4
*
hin
*
win
&&
kps_equal
&&
no_dilation
)
{
/// direct conv impl
impl_
=
new
DirectConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"invoking direct conv"
;
//
VLOG(3) << "invoking direct conv";
}
else
{
impl_
=
new
GemmLikeConv
<
PRECISION
(
kFloat
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"invoking gemm like conv"
;
//
VLOG(3) << "invoking gemm like conv";
}
impl_
->
SetContext
(
std
::
move
(
this
->
ctx_
));
impl_
->
SetParam
(
param
);
...
...
@@ -117,14 +117,14 @@ void ConvCompute<PRECISION(kInt8), PRECISION(kFloat)>::PrepareForRun() {
if
(
param
.
groups
==
ic
&&
ic
==
oc
&&
kps_equal
&&
pads_equal
&&
no_dilation
&&
flag_dw
)
{
impl_
=
new
DepthwiseConv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"Run DepthwiseConv Int8"
;
//
VLOG(3) << "Run DepthwiseConv Int8";
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
(
sw
==
1
||
sw
==
2
)
&&
kps_equal
&&
no_dilation
)
{
impl_
=
new
DirectConv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"Run DirectConv Int8"
;
//
VLOG(3) << "Run DirectConv Int8";
}
else
{
impl_
=
new
GemmLikeConv
<
PRECISION
(
kInt8
),
PRECISION
(
kFloat
)
>
;
VLOG
(
3
)
<<
"Run GemmLikeConvInt8"
;
//
VLOG(3) << "Run GemmLikeConvInt8";
}
impl_
->
SetContext
(
std
::
move
(
this
->
ctx_
));
impl_
->
SetParam
(
param
);
...
...
@@ -163,14 +163,14 @@ void ConvCompute<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
if
(
param
.
groups
==
ic
&&
ic
==
oc
&&
kps_equal
&&
pads_equal
&&
no_dilation
&&
flag_dw
)
{
impl_
=
new
DepthwiseConv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
;
VLOG
(
3
)
<<
"Run DepthwiseConv Int8"
;
//
VLOG(3) << "Run DepthwiseConv Int8";
}
else
if
(
param
.
groups
==
1
&&
kw
==
3
&&
(
sw
==
1
||
sw
==
2
)
&&
kps_equal
&&
no_dilation
)
{
impl_
=
new
DirectConv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
;
VLOG
(
3
)
<<
"Run DirectConv Int8"
;
//
VLOG(3) << "Run DirectConv Int8";
}
else
{
impl_
=
new
GemmLikeConv
<
PRECISION
(
kInt8
),
PRECISION
(
kInt8
)
>
;
VLOG
(
3
)
<<
"Run GemmLikeConvInt8"
;
//
VLOG(3) << "Run GemmLikeConvInt8";
}
impl_
->
SetContext
(
std
::
move
(
this
->
ctx_
));
impl_
->
SetParam
(
param
);
...
...
lite/kernels/arm/conv_depthwise.cc
浏览文件 @
187bf7c5
...
...
@@ -30,7 +30,7 @@ void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
auto
kw
=
w_dims
[
3
];
// select dw conv kernel
if
(
kw
==
3
)
{
VLOG
(
5
)
<<
"invoke 3x3 dw conv fp32"
;
//
VLOG(5) << "invoke 3x3 dw conv fp32";
auto
paddings
=
*
param
.
paddings
;
bool
pads_equal
=
((
paddings
[
0
]
==
paddings
[
1
])
&&
(
paddings
[
2
]
==
paddings
[
3
]));
...
...
@@ -54,7 +54,7 @@ void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
flag_trans_weights_
=
true
;
}
}
else
if
(
kw
==
5
)
{
VLOG
(
5
)
<<
"invoke 5x5 dw conv fp32"
;
//
VLOG(5) << "invoke 5x5 dw conv fp32";
impl_
=
lite
::
arm
::
math
::
conv_depthwise_5x5_fp32
;
}
else
{
LOG
(
FATAL
)
<<
"this type dw conv not impl"
;
...
...
@@ -86,7 +86,7 @@ void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::PrepareForRun() {
/// select dw conv kernel
if
(
kw
==
3
)
{
// trans weights
VLOG
(
5
)
<<
"invoke 3x3 dw conv int8 kernel fp32 out"
;
//
VLOG(5) << "invoke 3x3 dw conv int8 kernel fp32 out";
impl_
=
lite
::
arm
::
math
::
conv_depthwise_3x3_int8_fp32
;
int
cround
=
ROUNDUP
(
w_dims
[
0
],
8
);
weights_
.
Resize
({
cround
/
8
,
1
,
kh
*
kw
,
8
});
...
...
@@ -96,7 +96,7 @@ void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::PrepareForRun() {
flag_trans_weights_
=
true
;
}
else
if
(
kw
==
5
)
{
// trans weights
VLOG
(
5
)
<<
"invoke 5x5 dw conv int8 kernel fp32 out"
;
//
VLOG(5) << "invoke 5x5 dw conv int8 kernel fp32 out";
impl_
=
lite
::
arm
::
math
::
conv_depthwise_5x5_int8_fp32
;
int
cround
=
ROUNDUP
(
w_dims
[
0
],
8
);
weights_
.
Resize
({
cround
/
8
,
1
,
kh
*
kw
,
8
});
...
...
@@ -145,7 +145,7 @@ void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
/// select dw conv kernel
if
(
kw
==
3
)
{
// trans weights
VLOG
(
5
)
<<
"invoke 3x3 dw conv int8 kernel int8 out"
;
//
VLOG(5) << "invoke 3x3 dw conv int8 kernel int8 out";
impl_
=
lite
::
arm
::
math
::
conv_depthwise_3x3_int8_int8
;
int
cround
=
ROUNDUP
(
w_dims
[
0
],
8
);
weights_
.
Resize
({
cround
/
8
,
1
,
kh
*
kw
,
8
});
...
...
@@ -155,7 +155,7 @@ void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
flag_trans_weights_
=
true
;
}
else
if
(
kw
==
5
)
{
// trans weights
VLOG
(
5
)
<<
"invoke 5x5 dw conv int8 kernel int8 out"
;
//
VLOG(5) << "invoke 5x5 dw conv int8 kernel int8 out";
impl_
=
lite
::
arm
::
math
::
conv_depthwise_5x5_int8_int8
;
int
cround
=
ROUNDUP
(
w_dims
[
0
],
8
);
weights_
.
Resize
({
cround
/
8
,
1
,
kh
*
kw
,
8
});
...
...
lite/kernels/arm/pool_compute.cc
浏览文件 @
187bf7c5
...
...
@@ -41,18 +41,20 @@ void PoolCompute::Run() {
std
::
vector
<
int
>&
paddings
=
*
param
.
paddings
;
std
::
string
&
pooling_type
=
param
.
pooling_type
;
bool
global_pooling
=
param
.
global_pooling
;
bool
exclusive
=
param
.
exclusive
;
bool
adaptive
=
param
.
adaptive
;
bool
ceil_mode
=
param
.
ceil_mode
;
bool
use_quantizer
=
param
.
use_quantizer
;
std
::
string
&
data_format
=
param
.
data_format
;
bool
pads_equal
=
(
paddings
[
0
]
==
paddings
[
1
])
&&
(
paddings
[
2
]
==
paddings
[
3
]);
bool
kps_equal
=
(
ksize
[
0
]
==
ksize
[
1
])
&&
(
strides
[
0
]
==
strides
[
1
])
&&
(
paddings
[
0
]
==
paddings
[
2
]);
bool
pads_equal
=
(
paddings
[
0
]
==
paddings
[
1
])
&&
(
paddings
[
2
]
==
paddings
[
3
])
&&
(
paddings
[
0
]
==
paddings
[
2
]);
bool
kps_equal
=
(
ksize
[
0
]
==
ksize
[
1
])
&&
(
strides
[
0
]
==
strides
[
1
])
&&
pads_equal
;
bool
global_pooling
=
(
paddings
[
0
]
==
0
)
&&
(
ksize
[
0
]
==
in_dims
[
2
])
&&
(
ksize
[
1
]
==
in_dims
[
3
])
&&
pads_equal
;
global_pooling
=
param
.
global_pooling
||
global_pooling
;
if
(
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
2
*
i
]
=
0
;
...
...
@@ -83,8 +85,7 @@ void PoolCompute::Run() {
return
;
}
}
else
{
if
(
ksize
[
0
]
==
2
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
0
&&
pads_equal
&&
kps_equal
)
{
if
(
ksize
[
0
]
==
2
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
0
&&
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling2x2s2_max
(
din
,
dout
,
...
...
@@ -110,7 +111,7 @@ void PoolCompute::Run() {
return
;
}
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
1
&&
paddings
[
0
]
==
1
&&
pads_equal
&&
kps_equal
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s1p1_max
(
din
,
dout
,
...
...
@@ -136,7 +137,7 @@ void PoolCompute::Run() {
return
;
}
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
1
&&
paddings
[
0
]
==
0
&&
pads_equal
&&
kps_equal
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s1p0_max
(
din
,
dout
,
...
...
@@ -162,7 +163,7 @@ void PoolCompute::Run() {
return
;
}
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
0
&&
pads_equal
&&
kps_equal
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s2p0_max
(
din
,
dout
,
...
...
@@ -188,7 +189,7 @@ void PoolCompute::Run() {
return
;
}
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
1
&&
pads_equal
&&
kps_equal
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s2p1_max
(
din
,
dout
,
...
...
lite/kernels/arm/split_lod_tensor_compute.cc
浏览文件 @
187bf7c5
...
...
@@ -54,7 +54,7 @@ void SplitLodTensorCompute::Run() {
}
lod
->
clear
();
for
(
size_t
i
=
0
;
i
<
static_cast
<
size_t
>
(
mask_dim
[
0
]);
i
++
)
{
VLOG
(
4
)
<<
"mask: "
<<
mask_data
[
i
];
//
VLOG(4) << "mask: " << mask_data[i];
if
(
static_cast
<
size_t
>
(
mask_data
[
i
])
==
t
)
{
size_t
start_idx
=
i
;
auto
lod_and_offset
=
lite
::
arm
::
math
::
GetSubLoDAndAbsoluteOffset
(
...
...
lite/kernels/arm/while_compute.h
浏览文件 @
187bf7c5
...
...
@@ -36,7 +36,7 @@ class StepExecutor {
auto
&
op_desc
=
*
block
->
template
GetOp
<
cpp
::
OpDesc
>(
i
);
auto
op_type
=
op_desc
.
Type
();
auto
op_handler
=
lite
::
LiteOpRegistry
::
Global
().
Create
(
op_desc
.
Type
());
VLOG
(
4
)
<<
"while: creating Op ["
<<
op_type
<<
"]"
;
//
VLOG(4) << "while: creating Op [" << op_type << "]";
op_handler
->
Attach
(
op_desc
,
scope
);
auto
hostplace
=
place_
;
...
...
@@ -51,9 +51,9 @@ class StepExecutor {
void
Run
()
{
for
(
auto
&
op_handler
:
ops_of_block_
)
{
VLOG
(
4
)
<<
op_handler
->
op_info
()
->
Repr
();
//
VLOG(4) << op_handler->op_info()->Repr();
op_handler
->
InferShape
();
VLOG
(
4
)
<<
"while: infered shape"
;
//
VLOG(4) << "while: infered shape";
op_handler
->
Run
();
}
}
...
...
lite/tests/math/pool_compute_test.cc
浏览文件 @
187bf7c5
...
...
@@ -355,7 +355,8 @@ void test_pool_fp32(const std::vector<DDim>& input_dims,
LOG
(
FATAL
)
<<
"test fp32 pool: input: "
<<
dim_in
<<
", output: "
<<
dim_out
<<
", kernel dim: "
<<
ksize
[
0
]
<<
", "
<<
ksize
[
1
]
<<
", pad: "
<<
pads
[
0
]
<<
", "
<<
pads
[
1
]
<<
", pad: "
<<
pads
[
0
]
<<
", "
<<
pads
[
1
]
<<
", "
<<
pads
[
2
]
<<
", "
<<
pads
[
3
]
<<
", stride: "
<<
strides
[
0
]
<<
", "
<<
strides
[
1
]
<<
", global_pooling: "
<<
(
flag_global
?
"global"
:
"false"
)
...
...
@@ -370,6 +371,7 @@ void test_pool_fp32(const std::vector<DDim>& input_dims,
LOG
(
INFO
)
<<
"test fp32 pool: input: "
<<
dim_in
<<
", output: "
<<
dim_out
<<
", kernel dim: "
<<
ksize
[
0
]
<<
", "
<<
ksize
[
1
]
<<
", pad: "
<<
pads
[
0
]
<<
", "
<<
pads
[
1
]
<<
", "
<<
pads
[
2
]
<<
", "
<<
pads
[
3
]
<<
", stride: "
<<
strides
[
0
]
<<
", "
<<
strides
[
1
]
<<
", global_pooling: "
<<
(
flag_global
?
"global"
:
"false"
)
<<
", pooling_type: "
<<
pooling_type
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录