提交 17c42bdf 编写于 作者: Z zhangyang0701

change format

上级 add0c1eb
...@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <iostream>
#include <fstream> #include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h" #include "../../src/io/paddle_inference_api.h"
using namespace paddle_mobile; using namespace paddle_mobile;
...@@ -67,7 +67,7 @@ int main() { ...@@ -67,7 +67,7 @@ int main() {
readStream(g_image, reinterpret_cast<char *>(img)); readStream(g_image, reinterpret_cast<char *>(img));
std::cout << "after initializing data" << std::endl; std::cout << "after initializing data" << std::endl;
/* /*
predictor->FeedData({img_info, img}); predictor->FeedData({img_info, img});
predictor->Predict_From_To(0, -1); predictor->Predict_From_To(0, -1);
std::cout << " Finishing predicting " << std::endl; std::cout << " Finishing predicting " << std::endl;
...@@ -89,18 +89,18 @@ int main() { ...@@ -89,18 +89,18 @@ int main() {
std:: cout << ((float*)(v[2]))[num * 4 + i] << std::endl; std:: cout << ((float*)(v[2]))[num * 4 + i] << std::endl;
} }
} }
*/ */
struct PaddleTensor t_img_info, t_img; struct PaddleTensor t_img_info, t_img;
t_img_info.dtype = FLOAT32; t_img_info.dtype = FLOAT32;
t_img_info.layout = LAYOUT_HWC; t_img_info.layout = LAYOUT_HWC;
t_img_info.shape = std::vector<int>({1,3}); t_img_info.shape = std::vector<int>({1, 3});
t_img_info.name = "Image information"; t_img_info.name = "Image information";
t_img_info.data.Reset(img_info, 3 * sizeof(float)); t_img_info.data.Reset(img_info, 3 * sizeof(float));
t_img.dtype = FLOAT32; t_img.dtype = FLOAT32;
t_img.layout = LAYOUT_HWC; t_img.layout = LAYOUT_HWC;
t_img.shape = std::vector<int>({1,768, 1536, 3}); t_img.shape = std::vector<int>({1, 768, 1536, 3});
t_img.name = "Image information"; t_img.name = "Image information";
t_img.data.Reset(img, img_length * sizeof(float)); t_img.data.Reset(img, img_length * sizeof(float));
predictor->FeedPaddleTensors({t_img_info, t_img}); predictor->FeedPaddleTensors({t_img_info, t_img});
...@@ -112,23 +112,23 @@ int main() { ...@@ -112,23 +112,23 @@ int main() {
std::vector<PaddleTensor> v(3, PaddleTensor()); std::vector<PaddleTensor> v(3, PaddleTensor());
predictor->FetchPaddleTensors(&v); predictor->FetchPaddleTensors(&v);
auto post_nms = v[0].data.length()/sizeof(float)/8; auto post_nms = v[0].data.length() / sizeof(float) / 8;
for (int num = 0; num < post_nms; num ++){ for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 8; i ++){ for (int i = 0; i < 8; i++) {
auto p = reinterpret_cast<float*>(v[0].data.data()); auto p = reinterpret_cast<float *>(v[0].data.data());
std:: cout << p[num * 8 + i] << std::endl; std::cout << p[num * 8 + i] << std::endl;
} }
} }
for (int num = 0; num < post_nms; num ++){ for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 8; i ++){ for (int i = 0; i < 8; i++) {
auto p = reinterpret_cast<float*>(v[1].data.data()); auto p = reinterpret_cast<float *>(v[1].data.data());
std:: cout << p[num * 8 + i] << std::endl; std::cout << p[num * 8 + i] << std::endl;
} }
} }
for (int num = 0; num < post_nms; num ++){ for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 4; i ++){ for (int i = 0; i < 4; i++) {
auto p = reinterpret_cast<float*>(v[2].data.data()); auto p = reinterpret_cast<float *>(v[2].data.data());
std:: cout << p[num * 4 + i] << std::endl; std::cout << p[num * 4 + i] << std::endl;
} }
} }
return 0; return 0;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册