提交 17c42bdf 编写于 作者: Z zhangyang0701

change format

上级 add0c1eb
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using namespace paddle_mobile;
......@@ -39,68 +39,68 @@ void readStream(std::string filename, char *buf) {
}
PaddleMobileConfig GetConfig() {
PaddleMobileConfig config;
config.precision = PaddleMobileConfig::FP32;
config.device = PaddleMobileConfig::kFPGA;
config.prog_file = g_model;
config.param_file = g_param;
config.thread_num = 1;
config.batch_size = 1;
config.optimize = true;
config.lod_mode = true;
config.quantification = false;
return config;
PaddleMobileConfig config;
config.precision = PaddleMobileConfig::FP32;
config.device = PaddleMobileConfig::kFPGA;
config.prog_file = g_model;
config.param_file = g_param;
config.thread_num = 1;
config.batch_size = 1;
config.optimize = true;
config.lod_mode = true;
config.quantification = false;
return config;
}
int main() {
open_device();
PaddleMobileConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config);
std::cout << "after loading model" << std::endl;
float img_info[3] = {768, 1536, 768.0f / 960.0f};
int img_length = 768 * 1536 * 3;
auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
readStream(g_image, reinterpret_cast<char *>(img));
std::cout << "after initializing data" << std::endl;
/*
predictor->FeedData({img_info, img});
predictor->Predict_From_To(0, -1);
std::cout << " Finishing predicting " << std::endl;
std::vector<void *> v(3, nullptr);
predictor->GetResults(&v);
int post_nms = 300;
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 8; i ++){
std:: cout << ((float*)(v[0]))[num * 8 + i] << std::endl;
open_device();
PaddleMobileConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<PaddleMobileConfig,
PaddleEngineKind::kPaddleMobile>(config);
std::cout << "after loading model" << std::endl;
float img_info[3] = {768, 1536, 768.0f / 960.0f};
int img_length = 768 * 1536 * 3;
auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
readStream(g_image, reinterpret_cast<char *>(img));
std::cout << "after initializing data" << std::endl;
/*
predictor->FeedData({img_info, img});
predictor->Predict_From_To(0, -1);
std::cout << " Finishing predicting " << std::endl;
std::vector<void *> v(3, nullptr);
predictor->GetResults(&v);
int post_nms = 300;
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 8; i ++){
std:: cout << ((float*)(v[0]))[num * 8 + i] << std::endl;
}
}
}
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 8; i ++){
std:: cout << ((float*)(v[1]))[num * 8 + i] << std::endl;
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 8; i ++){
std:: cout << ((float*)(v[1]))[num * 8 + i] << std::endl;
}
}
}
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 4; i ++){
std:: cout << ((float*)(v[2]))[num * 4 + i] << std::endl;
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 4; i ++){
std:: cout << ((float*)(v[2]))[num * 4 + i] << std::endl;
}
}
}
*/
*/
struct PaddleTensor t_img_info, t_img;
t_img_info.dtype = FLOAT32;
t_img_info.layout = LAYOUT_HWC;
t_img_info.shape = std::vector<int>({1,3});
t_img_info.shape = std::vector<int>({1, 3});
t_img_info.name = "Image information";
t_img_info.data.Reset(img_info, 3 * sizeof(float));
t_img.dtype = FLOAT32;
t_img.layout = LAYOUT_HWC;
t_img.shape = std::vector<int>({1,768, 1536, 3});
t_img.shape = std::vector<int>({1, 768, 1536, 3});
t_img.name = "Image information";
t_img.data.Reset(img, img_length * sizeof(float));
predictor->FeedPaddleTensors({t_img_info, t_img});
......@@ -112,24 +112,24 @@ int main() {
std::vector<PaddleTensor> v(3, PaddleTensor());
predictor->FetchPaddleTensors(&v);
auto post_nms = v[0].data.length()/sizeof(float)/8;
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 8; i ++){
auto p = reinterpret_cast<float*>(v[0].data.data());
std:: cout << p[num * 8 + i] << std::endl;
auto post_nms = v[0].data.length() / sizeof(float) / 8;
for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 8; i++) {
auto p = reinterpret_cast<float *>(v[0].data.data());
std::cout << p[num * 8 + i] << std::endl;
}
}
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 8; i ++){
auto p = reinterpret_cast<float*>(v[1].data.data());
std:: cout << p[num * 8 + i] << std::endl;
for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 8; i++) {
auto p = reinterpret_cast<float *>(v[1].data.data());
std::cout << p[num * 8 + i] << std::endl;
}
}
for (int num = 0; num < post_nms; num ++){
for (int i = 0; i < 4; i ++){
auto p = reinterpret_cast<float*>(v[2].data.data());
std:: cout << p[num * 4 + i] << std::endl;
for (int num = 0; num < post_nms; num++) {
for (int i = 0; i < 4; i++) {
auto p = reinterpret_cast<float *>(v[2].data.data());
std::cout << p[num * 4 + i] << std::endl;
}
}
return 0;
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册