Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
104dd1d6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
104dd1d6
编写于
5月 07, 2020
作者:
M
MaxwellDing
提交者:
GitHub
5月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(mlu): add slice converter (
#72
)
add slice converter
上级
b95d214f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
500 addition
and
5 deletion
+500
-5
lite/kernels/mlu/bridges/CMakeLists.txt
lite/kernels/mlu/bridges/CMakeLists.txt
+3
-0
lite/kernels/mlu/bridges/lrn_op_test.cc
lite/kernels/mlu/bridges/lrn_op_test.cc
+23
-5
lite/kernels/mlu/bridges/slice_op.cc
lite/kernels/mlu/bridges/slice_op.cc
+94
-0
lite/kernels/mlu/bridges/slice_op_test.cc
lite/kernels/mlu/bridges/slice_op_test.cc
+380
-0
未找到文件。
lite/kernels/mlu/bridges/CMakeLists.txt
浏览文件 @
104dd1d6
...
...
@@ -20,6 +20,7 @@ lite_cc_library(subgraph_bridge_interp_op_mlu SRCS interpolate_op.cc DEPS ${subg
lite_cc_library
(
subgraph_bridge_concat_op_mlu SRCS concat_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_transpose_op_mlu SRCS transpose_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_mlu SRCS dropout_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_slice_op_mlu SRCS slice_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_argmax_op_mlu SRCS argmax_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
set
(
mlu_subgraph_bridges
subgraph_bridge_registry
...
...
@@ -37,6 +38,7 @@ set(mlu_subgraph_bridges
subgraph_bridge_interp_op_mlu
subgraph_bridge_concat_op_mlu
subgraph_bridge_dropout_op_mlu
subgraph_bridge_slice_op_mlu
subgraph_bridge_argmax_op_mlu
CACHE INTERNAL
"mlu_subgraph_bridges"
)
...
...
@@ -59,6 +61,7 @@ lite_cc_test(test_interp_converter_mlu SRCS interpolate_op_test.cc DEPS scope op
lite_cc_test
(
test_concat_converter_mlu SRCS concat_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_transpose_converter_mlu SRCS transpose_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_slice_converter_mlu SRCS slice_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_argmax_converter_mlu SRCS argmax_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_lrn_converter_mlu SRCS lrn_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
...
...
lite/kernels/mlu/bridges/lrn_op_test.cc
浏览文件 @
104dd1d6
...
...
@@ -165,13 +165,9 @@ void test_lrn(float alpha,
out_ref
->
Resize
(
x_dim
);
auto
*
x_data
=
x
->
mutable_data
<
float
>
();
FillTensor
<
float
,
float
>
(
x
,
0.
f
,
1.
f
);
/* for (size_t i = 0; i < x->data_size(); i++) { */
/* x_data[i] = i; */
/* } */
float
*
dmax
,
*
dmin
;
std
::
tie
(
dmin
,
dmax
)
=
std
::
minmax_element
(
x_data
,
x_data
+
x
->
data_size
()
-
1
);
printf
(
"max: %f, min: %f
\n
"
,
*
dmax
,
*
dmin
);
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"lrn"
);
...
...
@@ -190,9 +186,31 @@ void test_lrn(float alpha,
lrn_compute_ref
(
op
);
out_ref
->
CopyDataFrom
(
*
out
);
Tensor
input_x
;
input_x
.
Resize
(
x
->
dims
());
transpose
(
x
->
mutable_data
<
float
>
(),
input_x
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
x_dim
[
0
]),
static_cast
<
int
>
(
x_dim
[
1
]),
static_cast
<
int
>
(
x_dim
[
2
]),
static_cast
<
int
>
(
x_dim
[
3
])},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input_x
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
auto
*
output_data
=
out
->
mutable_data
<
float
>
();
Tensor
output_trans
;
auto
os
=
out
->
dims
();
output_trans
.
Resize
(
os
);
transpose
(
out
->
mutable_data
<
float
>
(),
output_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
os
[
0
]),
static_cast
<
int
>
(
os
[
2
]),
static_cast
<
int
>
(
os
[
3
]),
static_cast
<
int
>
(
os
[
1
])},
{
0
,
3
,
1
,
2
});
auto
output_data
=
output_trans
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
out
->
data_size
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-4
);
...
...
lite/kernels/mlu/bridges/slice_op.cc
0 → 100644
浏览文件 @
104dd1d6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
SliceConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// input
auto
input_var_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
input
=
scope
->
FindVar
(
input_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
input_shape
=
input
->
dims
().
Vectorize
();
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
// attr
auto
axes
=
op_info
->
GetAttr
<
std
::
vector
<
int32_t
>>
(
"axes"
);
auto
starts
=
op_info
->
GetAttr
<
std
::
vector
<
int32_t
>>
(
"starts"
);
auto
ends
=
op_info
->
GetAttr
<
std
::
vector
<
int32_t
>>
(
"ends"
);
CHECK
(
graph
->
HasNode
(
input_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
input_var_name
);
auto
output_tensor
=
graph
->
AddNode
(
output_var_name
,
output
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
std
::
vector
<
int32_t
>
begin_index
(
input_shape
.
size
(),
0
);
std
::
vector
<
int32_t
>
end_index
(
input_shape
.
size
());
std
::
vector
<
int32_t
>
strides
(
input_shape
.
size
(),
1
);
CHECK
(
input_shape
.
size
()
==
4
)
<<
"only support 4 dimention"
;
std
::
vector
<
int
>
nchw2nhwc_index
=
{
0
,
3
,
1
,
2
};
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
end_index
[
nchw2nhwc_index
[
i
]]
=
input_shape
[
i
];
}
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
int
dim_value
=
input_shape
[
axes
[
i
]];
int
end
=
ends
[
i
]
<
0
?
std
::
max
(
ends
[
i
]
+
dim_value
,
0
)
:
ends
[
i
];
begin_index
[
nchw2nhwc_index
[
axes
[
i
]]]
=
starts
[
i
]
<
0
?
std
::
max
(
starts
[
i
]
+
dim_value
,
0
)
:
starts
[
i
];
end_index
[
nchw2nhwc_index
[
axes
[
i
]]]
=
std
::
min
(
end
,
dim_value
);
}
cnmlNdStridedSliceOpParam_t
param
;
cnmlBaseOp_t
slice_op
;
CNML_CALL
(
cnmlCreateNdStridedSliceOpParam
(
&
param
,
input_shape
.
size
(),
begin_index
.
data
(),
end_index
.
data
(),
strides
.
data
()));
CNML_CALL
(
cnmlCreateNdStridedSliceOp
(
&
slice_op
,
param
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyNdStridedSliceOpParam
(
&
param
));
graph
->
FuseOp
(
slice_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
slice_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
slice
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SliceConverter
);
lite/kernels/mlu/bridges/slice_op_test.cc
0 → 100644
浏览文件 @
104dd1d6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/slice_op.h"
#include <gtest/gtest.h>
#include <utility>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
static
void
slice_ref
(
const
float
*
input
,
std
::
vector
<
int64_t
>
in_dims
,
std
::
vector
<
int
>
axes
,
std
::
vector
<
int
>
starts
,
std
::
vector
<
int
>
ends
,
float
*
out
)
{
auto
out_dims
=
in_dims
;
std
::
vector
<
int
>
real_starts
(
in_dims
.
size
(),
0
);
std
::
vector
<
int
>
real_ends
(
in_dims
.
size
(),
0
);
std
::
vector
<
int
>
real_step
(
in_dims
.
size
(),
0
);
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
real_ends
[
i
]
=
in_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
int
dim_value
=
in_dims
[
axes
[
i
]];
if
(
dim_value
>
0
)
{
int
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
dim_value
)
:
starts
[
i
];
int
end
=
ends
[
i
]
<
0
?
(
ends
[
i
]
+
dim_value
)
:
ends
[
i
];
start
=
std
::
max
(
start
,
0
);
end
=
std
::
max
(
end
,
0
);
end
=
std
::
min
(
end
,
dim_value
);
out_dims
[
axes
[
i
]]
=
end
-
start
;
real_starts
[
axes
[
i
]]
=
start
;
real_ends
[
axes
[
i
]]
=
end
;
}
}
const
int
LEN
=
in_dims
.
size
();
int
dst_step
[
LEN
];
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
dst_step
[
i
]
=
1
;
}
int
src_step
[
LEN
];
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
src_step
[
i
]
=
1
;
}
int
out_num
=
out_dims
[
in_dims
.
size
()
-
1
];
for
(
int
i
=
in_dims
.
size
()
-
2
;
i
>=
0
;
i
--
)
{
dst_step
[
i
]
=
out_dims
[
i
+
1
]
*
dst_step
[
i
+
1
];
src_step
[
i
]
=
in_dims
[
i
+
1
]
*
src_step
[
i
+
1
];
out_num
*=
out_dims
[
i
];
}
for
(
int
dst_id
=
0
;
dst_id
<
out_num
;
dst_id
++
)
{
int
src_id
=
0
;
int
index_id
=
dst_id
;
for
(
int
j
=
0
;
j
<
out_dims
.
size
();
j
++
)
{
int
cur_id
=
index_id
/
dst_step
[
j
];
index_id
=
index_id
%
dst_step
[
j
];
src_id
+=
(
cur_id
+
real_starts
[
j
])
*
src_step
[
j
];
}
out
[
dst_id
]
=
input
[
src_id
];
}
}
static
void
test_case
(
std
::
vector
<
int64_t
>
x_shape
,
std
::
vector
<
int64_t
>
out_shape
,
std
::
vector
<
int
>
starts
,
std
::
vector
<
int
>
ends
,
std
::
vector
<
int
>
axes
)
{
Scope
scope
;
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name
=
"out"
;
auto
*
x
=
scope
.
NewTensor
(
x_var_name
);
auto
*
out
=
scope
.
NewTensor
(
out_var_name
);
x
->
Resize
(
lite
::
DDim
(
x_shape
));
out
->
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
->
mutable_data
<
float
>
();
FillTensor
<
float
,
float
>
(
x
,
0.
f
,
2.
f
);
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"slice"
);
opdesc
.
SetInput
(
"Input"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"axes"
,
axes
);
opdesc
.
SetAttr
(
"starts"
,
starts
);
opdesc
.
SetAttr
(
"ends"
,
ends
);
std
::
vector
<
float
>
out_ref
(
out
->
data_size
(),
0
);
slice_ref
(
x_data
,
x_shape
,
axes
,
starts
,
ends
,
out_ref
.
data
());
Tensor
input_x
;
input_x
.
Resize
(
x
->
dims
());
transpose
(
x
->
mutable_data
<
float
>
(),
input_x
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
x_shape
[
0
]),
static_cast
<
int
>
(
x_shape
[
1
]),
static_cast
<
int
>
(
x_shape
[
2
]),
static_cast
<
int
>
(
x_shape
[
3
])},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input_x
);
auto
op
=
CreateOp
<
operators
::
SliceOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
Tensor
output_trans
;
auto
os
=
out
->
dims
();
output_trans
.
Resize
(
os
);
transpose
(
out
->
mutable_data
<
float
>
(),
output_trans
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
os
[
0
]),
static_cast
<
int
>
(
os
[
2
]),
static_cast
<
int
>
(
os
[
3
]),
static_cast
<
int
>
(
os
[
1
])},
{
0
,
3
,
1
,
2
});
auto
out_data
=
output_trans
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_ref
[
i
],
out_data
[
i
],
1e-4
);
}
}
TEST
(
MLUBridges
,
slice
)
{
/* test_case({3}, {3}, {-3}, {3}, {0}); */
/* test_case({3, 4}, {3, 4}, {-3, 0}, {3, 100}, {0, 1}); */
/* test_case({3, 4, 5}, {3, 4, 2}, {-3, 0, 2}, {3, 100, -1}, {0, 1, 2}); */
test_case
({
3
,
4
,
5
,
6
},
{
3
,
4
,
2
,
6
},
{
-
3
,
0
,
2
},
{
3
,
100
,
-
1
},
{
0
,
1
,
2
});
/* test_case({3, 4, 5, 6, 3}, {3, 4, 2, 6, 3}, {-3, 0, 2}, {3, 100, -1}, {0,
* 1, 2}); */
/* test_case({3, 4, 5, 6, 5, 2}, {3, 4, 2, 6, 5, 2}, {-3, 0, 2}, {3, 100, 1},
* {0, 1, 2}); */
}
// void test_tensor_case1(lite::Tensor *x, lite::Tensor *out) {
// std::vector<int64_t> x_shape({10});
// x.Resize(lite::DDim(x_shape));
// std::vector<int64_t> out_shape({5});
// out.Resize(lite::DDim(out_shape));
//
// auto x_data = x.mutable_data<float>();
// auto out_data = out.mutable_data<float>();
//
// for (int64_t i = 0; i < x.dims().production(); ++i) {
// x_data[i] = static_cast<float>(i);
// }
//
// std::vector<int> starts({3});
// std::vector<int> ends({8});
// std::vector<int> axes({0});
//
// // SliceCompute slice;
// SliceCompute<float> slice;
// operators::SliceParam param;
//
// param.X = &x;
// param.Out = &out;
// param.axes = axes;
// lite::Tensor starts_tensor, ends_tensor;
// starts_tensor.Resize(DDim({1}));
// ends_tensor.Resize(DDim({1}));
// starts_tensor.mutable_data<int>()[0] = starts[0];
// ends_tensor.mutable_data<int>()[0] = ends[0];
// param.StartsTensor = &starts_tensor;
// param.EndsTensor = &ends_tensor;
//
// std::unique_ptr<KernelContext> ctx(new KernelContext);
// ctx->As<X86Context>();
// slice.SetContext(std::move(ctx));
// slice.SetParam(param);
// slice.Run();
//
// std::vector<float> out_ref(out.numel(), 0);
// slice_ref(x_data, x_shape, axes, starts, ends, out_ref.data());
//
// for (int i = 0; i < out.dims().production(); i++) {
// EXPECT_NEAR(out_ref[i], out_data[i], 1e-4);
// }
// }
//
// void test_tensor_case3(lite::Tensor *x, lite::Tensor *out) {
// std::vector<int64_t> x_shape({3, 4, 5});
// x.Resize(lite::DDim(x_shape));
// std::vector<int64_t> out_shape({3, 4, 2});
// out.Resize(lite::DDim(out_shape));
//
// auto x_data = x.mutable_data<float>();
// auto out_data = out.mutable_data<float>();
//
// for (int64_t i = 0; i < x.dims().production(); ++i) {
// x_data[i] = static_cast<float>(i);
// }
//
// std::vector<int> starts({-3, 0, 2});
// std::vector<int> ends({3, 100, -1});
// std::vector<int> axes({0, 1, 2});
//
// // SliceCompute slice;
// SliceCompute<float> slice;
// operators::SliceParam param;
//
// param.X = &x;
// param.Out = &out;
// param.axes = axes;
// lite::Tensor starts_tensor, ends_tensor;
// starts_tensor.Resize(DDim({3}));
// ends_tensor.Resize(DDim({3}));
// for (int i = 0; i < starts.size(); ++i) {
// starts_tensor.mutable_data<int>()[i] = starts[i];
// ends_tensor.mutable_data<int>()[i] = ends[i];
// }
// param.StartsTensor = &starts_tensor;
// param.EndsTensor = &ends_tensor;
//
// std::unique_ptr<KernelContext> ctx(new KernelContext);
// ctx->As<X86Context>();
// slice.SetContext(std::move(ctx));
// slice.SetParam(param);
// slice.Run();
//
// std::vector<float> out_ref(out.numel(), 0);
// slice_ref(x_data, x_shape, axes, starts, ends, out_ref.data());
//
// for (int i = 0; i < out.dims().production(); i++) {
// EXPECT_NEAR(out_ref[i], out_data[i], 1e-4);
// }
// }
// TEST(MLUBridges, slice_tensor) {
// auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
// auto* out = scope.Var(y_var_name)->GetMutable<Tensor>();
//
// test_tensor_case1(x, out);
// test_tensor_case3(x, out);
// }
// void test_tensor_list_case1(lite::Tensor x, lite::Tensor out) {
// std::vector<int64_t> x_shape({10});
// x.Resize(lite::DDim(x_shape));
// std::vector<int64_t> out_shape({5});
// out.Resize(lite::DDim(out_shape));
//
// auto x_data = x.mutable_data<float>();
// auto out_data = out.mutable_data<float>();
//
// for (int64_t i = 0; i < x.dims().production(); ++i) {
// x_data[i] = static_cast<float>(i);
// }
//
// std::vector<int> starts({3});
// std::vector<int> ends({8});
// std::vector<int> axes({0});
//
// // SliceCompute slice;
// SliceCompute<float> slice;
// operators::SliceParam param;
//
// param.X = &x;
// param.Out = &out;
// param.axes = axes;
// param.StartsTensorList.clear();
// param.EndsTensorList.clear();
// lite::Tensor starts_tensor, ends_tensor;
// for (int i = 0; i < 1; ++i) {
// starts_tensor.Resize(DDim({1}));
// ends_tensor.Resize(DDim({1}));
// starts_tensor.mutable_data<int>()[0] = starts[0];
// ends_tensor.mutable_data<int>()[0] = ends[0];
// param.StartsTensorList.push_back(&starts_tensor);
// param.EndsTensorList.push_back(&ends_tensor);
// }
//
// std::unique_ptr<KernelContext> ctx(new KernelContext);
// ctx->As<X86Context>();
// slice.SetContext(std::move(ctx));
// slice.SetParam(param);
// slice.Run();
//
// std::vector<float> out_ref(out.numel(), 0);
// slice_ref(x_data, x_shape, axes, starts, ends, out_ref.data());
//
// for (int i = 0; i < out.dims().production(); i++) {
// EXPECT_NEAR(out_ref[i], out_data[i], 1e-4);
// }
// }
//
// void test_tensor_list_case3(lite::Tensor x, lite::Tensor out) {
// std::vector<int64_t> x_shape({3, 4, 5});
// x.Resize(lite::DDim(x_shape));
// std::vector<int64_t> out_shape({3, 4, 2});
// out.Resize(lite::DDim(out_shape));
//
// auto x_data = x.mutable_data<float>();
// auto out_data = out.mutable_data<float>();
//
// for (int64_t i = 0; i < x.dims().production(); ++i) {
// x_data[i] = static_cast<float>(i);
// }
//
// std::vector<int> starts({-3, 0, 2});
// std::vector<int> ends({3, 100, -1});
// std::vector<int> axes({0, 1, 2});
//
// // SliceCompute slice;
// SliceCompute<float> slice;
// operators::SliceParam param;
//
// param.X = &x;
// param.Out = &out;
// param.axes = axes;
// param.StartsTensorList.clear();
// param.EndsTensorList.clear();
// lite::Tensor starts_tensor0, ends_tensor0;
// lite::Tensor starts_tensor1, ends_tensor1;
// lite::Tensor starts_tensor2, ends_tensor2;
// starts_tensor0.Resize(DDim({1}));
// starts_tensor1.Resize(DDim({1}));
// starts_tensor2.Resize(DDim({1}));
// ends_tensor0.Resize(DDim({1}));
// ends_tensor1.Resize(DDim({1}));
// ends_tensor2.Resize(DDim({1}));
// starts_tensor0.mutable_data<int>()[0] = starts[0];
// starts_tensor1.mutable_data<int>()[0] = starts[1];
// starts_tensor2.mutable_data<int>()[0] = starts[2];
// ends_tensor0.mutable_data<int>()[0] = ends[0];
// ends_tensor1.mutable_data<int>()[0] = ends[1];
// ends_tensor2.mutable_data<int>()[0] = ends[2];
// param.StartsTensorList.emplace_back(&starts_tensor0);
// param.StartsTensorList.emplace_back(&starts_tensor1);
// param.StartsTensorList.emplace_back(&starts_tensor2);
// param.EndsTensorList.emplace_back(&ends_tensor0);
// param.EndsTensorList.emplace_back(&ends_tensor1);
// param.EndsTensorList.emplace_back(&ends_tensor2);
//
// std::unique_ptr<KernelContext> ctx(new KernelContext);
// ctx->As<X86Context>();
// slice.SetContext(std::move(ctx));
// slice.SetParam(param);
// slice.Run();
//
// std::vector<float> out_ref(out.numel(), 0);
// slice_ref(x_data, x_shape, axes, starts, ends, out_ref.data());
//
// for (int i = 0; i < out.dims().production(); i++) {
// EXPECT_NEAR(out_ref[i], out_data[i], 1e-4);
// }
// }
// TEST(MLUBridges, slice_tensor_list) {
// lite::Tensor x;
// lite::Tensor out;
//
// test_tensor_list_case1(x, out);
// test_tensor_list_case3(x, out);
// }
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
slice
,
kMLU
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录