Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
0c80a592
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0c80a592
编写于
9月 04, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
imp fusion_conv_bn_add op in resnet
上级
bb6230ac
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
40 addition
and
243 deletion
+40
-243
src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
...ators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
+4
-4
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+27
-179
src/operators/math/gemm.h
src/operators/math/gemm.h
+2
-10
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+4
-41
src/operators/math/math_function.h
src/operators/math/math_function.h
+1
-7
test/common/test_gemm_accuracy.cpp
test/common/test_gemm_accuracy.cpp
+2
-2
未找到文件。
src/operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h
浏览文件 @
0c80a592
...
@@ -108,7 +108,7 @@ void ConvBNAddReluBasic(const FusionConvBNAddReluParam<CPU> ¶m) {
...
@@ -108,7 +108,7 @@ void ConvBNAddReluBasic(const FusionConvBNAddReluParam<CPU> ¶m) {
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
bias_data
=
bias_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
bias_data
=
bias_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmulWithBn
Add
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmulWithBn
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
true
,
&
new_scale
,
static_cast
<
float
>
(
1
),
true
,
&
new_scale
,
&
new_bias
,
g
,
bias_data
.
data
<
float
>
());
&
new_bias
,
g
,
bias_data
.
data
<
float
>
());
...
...
src/operators/math/gemm.cpp
浏览文件 @
0c80a592
...
@@ -2962,7 +2962,7 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
...
@@ -2962,7 +2962,7 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
32
*
1024
;
int
L1
=
32
*
1024
;
...
@@ -3009,72 +3009,16 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
...
@@ -3009,72 +3009,16 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
#else
#else
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
#endif
#endif
if
(
bias
==
nullptr
)
{
InnerKernelWithBn
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
InnerKernelWithBn
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
}
else
{
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBnAdd
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
32
*
1024
;
int
L2
=
512
*
1024
;
KC
=
k
;
MC
=
L1
/
(
KC
*
sizeof
(
float
));
NC
=
L2
/
(
KC
*
sizeof
(
float
));
// make sure MC is multiple of MR, and NC is multiple of NR
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
memset
(
static_cast
<
void
*>
(
zero
),
0
,
sizeof
(
float
)
*
KC
);
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
#if __aarch64__
// PackMatrixB_12c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
PackMatrixB_16c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
#else
PackMatrixB_8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
#endif
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
#if __aarch64__
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
// PackMatrixA_8r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
#else
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
#endif
InnerKernelWithBnAdd
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
InnerKernelWithBnAdd
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
,
bias
+
i
*
ldc
+
j
);
bias
+
i
*
ldc
+
j
);
}
}
}
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedB
);
...
@@ -3260,114 +3204,7 @@ void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
...
@@ -3260,114 +3204,7 @@ void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
void
SgemmWithBn_omp
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
SgemmWithBn_omp
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
#ifdef _OPENMP
int
max_threads
=
omp_get_max_threads
();
#else
int
max_threads
=
1
;
#endif
int
L1
=
64
/
max_threads
*
1024
;
KC
=
k
;
if
(
m
>
n
)
{
// 对 A 分块
MC
=
L1
/
(
KC
*
sizeof
(
float
));
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
// 补齐 B
NC
=
(
n
+
NR
-
1
)
/
NR
*
NR
;
#if __aarch64__
procPackA
=
PackMatrixA_6r
;
procPackB
=
PackMatrixB_omp_16c
;
procAddDot
=
AddDot6x16
;
#else
procPackA
=
PackMatrixA_6r
;
procPackB
=
PackMatrixB_omp_8c
;
procAddDot
=
AddDot6x8
;
#endif
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
procPackB
(
KC
,
NC
,
NC
%
NR
,
B
,
ldb
,
packedB
);
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
*
max_threads
));
}
else
{
// 对 B 分块
NC
=
L1
/
(
KC
*
sizeof
(
float
));
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
// 补齐 A
MC
=
(
m
+
MR
-
1
)
/
MR
*
MR
;
#if __aarch64__
procPackA
=
PackMatrixA_omp_6r
;
procPackB
=
PackMatrixB_16c
;
procAddDot
=
AddDot6x16
;
#else
procPackA
=
PackMatrixA_omp_6r
;
procPackB
=
PackMatrixB_8c
;
procAddDot
=
AddDot6x8
;
#endif
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
procPackA
(
MC
,
KC
,
MC
%
MR
,
A
,
lda
,
packedA
);
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
*
max_threads
));
}
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
memset
(
static_cast
<
void
*>
(
zero
),
0
,
sizeof
(
float
)
*
KC
);
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
*
max_threads
));
if
(
m
>
n
)
{
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
#ifdef _OPENMP
int
local_threads
=
omp_get_thread_num
();
#else
int
local_threads
=
0
;
#endif
int
mc
;
mc
=
s_min
(
m
-
i
,
MC
);
float
*
local_A
=
packedA
+
MC
*
KC
*
local_threads
;
float
*
local_C
=
packedC
+
MC
*
NC
*
local_threads
;
procPackA
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
local_A
);
InnerKernelWithBn
(
mc
,
n
,
alpha
,
local_A
,
packedB
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
}
else
{
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
#ifdef _OPENMP
int
local_threads
=
omp_get_thread_num
();
#else
int
local_threads
=
0
;
#endif
int
nc
;
nc
=
s_min
(
n
-
j
,
NC
);
float
*
local_B
=
packedB
+
KC
*
NC
*
local_threads
;
float
*
local_C
=
packedC
+
MC
*
NC
*
local_threads
;
procPackB
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
local_B
);
InnerKernelWithBn
(
m
,
nc
,
alpha
,
packedA
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
,
new_scale
,
new_bias
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBnAdd_omp
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
)
{
float
*
bias
)
{
#ifdef _OPENMP
#ifdef _OPENMP
int
max_threads
=
omp_get_max_threads
();
int
max_threads
=
omp_get_max_threads
();
...
@@ -3445,10 +3282,15 @@ void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A,
...
@@ -3445,10 +3282,15 @@ void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A,
float
*
local_A
=
packedA
+
MC
*
KC
*
local_threads
;
float
*
local_A
=
packedA
+
MC
*
KC
*
local_threads
;
float
*
local_C
=
packedC
+
MC
*
NC
*
local_threads
;
float
*
local_C
=
packedC
+
MC
*
NC
*
local_threads
;
procPackA
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
local_A
);
procPackA
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
local_A
);
if
(
bias
==
nullptr
)
{
InnerKernelWithBn
(
mc
,
n
,
alpha
,
local_A
,
packedB
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
else
{
InnerKernelWithBnAdd
(
mc
,
n
,
alpha
,
local_A
,
packedB
,
beta
,
local_C
,
InnerKernelWithBnAdd
(
mc
,
n
,
alpha
,
local_A
,
packedB
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
,
&
C
(
i
,
0
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
,
bias
+
i
*
ldc
);
bias
+
i
*
ldc
);
}
}
}
}
else
{
}
else
{
#pragma omp parallel for
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
...
@@ -3463,8 +3305,14 @@ void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A,
...
@@ -3463,8 +3305,14 @@ void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A,
float
*
local_B
=
packedB
+
KC
*
NC
*
local_threads
;
float
*
local_B
=
packedB
+
KC
*
NC
*
local_threads
;
float
*
local_C
=
packedC
+
MC
*
NC
*
local_threads
;
float
*
local_C
=
packedC
+
MC
*
NC
*
local_threads
;
procPackB
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
local_B
);
procPackB
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
local_B
);
if
(
bias
==
nullptr
)
{
InnerKernelWithBn
(
m
,
nc
,
alpha
,
packedA
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
,
new_scale
,
new_bias
);
}
else
{
InnerKernelWithBnAdd
(
m
,
nc
,
alpha
,
packedA
,
local_B
,
beta
,
local_C
,
InnerKernelWithBnAdd
(
m
,
nc
,
alpha
,
packedA
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
,
new_scale
,
new_bias
,
bias
+
j
);
&
C
(
0
,
j
),
ldc
,
relu
,
new_scale
,
new_bias
,
bias
+
j
);
}
}
}
}
}
...
...
src/operators/math/gemm.h
浏览文件 @
0c80a592
...
@@ -156,9 +156,6 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
...
@@ -156,9 +156,6 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
void
SgemmWithBnAdd
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
);
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
);
void
SgemmWithPRelu
(
int
m
,
int
n
,
int
k
,
const
float
*
A
,
int
lda
,
void
SgemmWithPRelu
(
int
m
,
int
n
,
int
k
,
const
float
*
A
,
int
lda
,
...
@@ -173,12 +170,7 @@ void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
...
@@ -173,12 +170,7 @@ void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
// 32位 float 矩阵乘法, 并对结果进行 batchnrom(openmp 多线程版本)
// 32位 float 矩阵乘法, 并对结果进行 batchnrom(openmp 多线程版本)
void
SgemmWithBn_omp
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
SgemmWithBn_omp
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
);
// 32位 float 矩阵乘法, 并对结果进行 batchnorm和add(openmp 多线程版本)
void
SgemmWithBnAdd_omp
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias
);
void
SgemmWithPRelu_omp
(
int
m
,
int
n
,
int
k
,
const
float
*
A
,
int
lda
,
void
SgemmWithPRelu_omp
(
int
m
,
int
n
,
int
k
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
*
C
,
int
ldc
,
float
*
p
,
const
float
*
B
,
int
ldb
,
float
*
C
,
int
ldc
,
float
*
p
,
...
...
src/operators/math/math_function.cpp
浏览文件 @
0c80a592
...
@@ -56,7 +56,7 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
...
@@ -56,7 +56,7 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
framework
::
Tensor
*
new_scale
,
bool
relu
,
framework
::
Tensor
*
new_scale
,
framework
::
Tensor
*
new_bias
,
int
group
)
{
framework
::
Tensor
*
new_bias
,
int
group
,
float
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
@@ -79,49 +79,12 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
...
@@ -79,49 +79,12 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
SgemmWithBn_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
SgemmWithBn_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
()
+
group
,
relu
,
new_scale
->
data
<
float
>
()
+
group
,
new_bias
->
data
<
float
>
()
+
group
);
new_bias
->
data
<
float
>
()
+
group
,
bias
);
#else
#else
SgemmWithBn
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
SgemmWithBn
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
()
+
group
,
new_scale
->
data
<
float
>
()
+
group
,
new_bias
->
data
<
float
>
()
+
group
,
new_bias
->
data
<
float
>
()
+
group
);
bias
);
#endif
}
template
<
>
void
matmulWithBnAdd
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
framework
::
Tensor
*
new_scale
,
framework
::
Tensor
*
new_bias
,
int
group
,
float
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
#ifdef _OPENMP
SgemmWithBnAdd_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
()
+
group
,
new_bias
->
data
<
float
>
()
+
group
,
bias
);
#else
SgemmWithBnAdd
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
()
+
group
,
new_bias
->
data
<
float
>
()
+
group
,
bias
);
#endif
#endif
}
}
void
matmulWithPRelu
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
void
matmulWithPRelu
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
src/operators/math/math_function.h
浏览文件 @
0c80a592
...
@@ -32,13 +32,7 @@ void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a,
...
@@ -32,13 +32,7 @@ void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
,
framework
::
Tensor
*
new_scale
,
framework
::
Tensor
*
new_bias
,
framework
::
Tensor
*
new_scale
,
framework
::
Tensor
*
new_bias
,
int
group
);
int
group
,
float
*
bias
=
nullptr
);
template
<
typename
T
>
void
matmulWithBnAdd
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
framework
::
Tensor
*
new_scale
,
framework
::
Tensor
*
new_bias
,
int
group
,
float
*
bias
);
void
matmulWithPRelu
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
void
matmulWithPRelu
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
...
...
test/common/test_gemm_accuracy.cpp
浏览文件 @
0c80a592
...
@@ -83,8 +83,8 @@ int do_sgemm(int m, int n, int k, bool relu, int t1, int t2, int pr) {
...
@@ -83,8 +83,8 @@ int do_sgemm(int m, int n, int k, bool relu, int t1, int t2, int pr) {
}
}
}
}
paddle_mobile
::
operators
::
math
::
SgemmWithBn
(
m
,
n
,
k
,
0.9
,
a
,
lda
,
b
,
ldb
,
0.3
,
paddle_mobile
::
operators
::
math
::
SgemmWithBn
(
c
,
ldc
,
relu
,
scale
,
bias
);
m
,
n
,
k
,
0.9
,
a
,
lda
,
b
,
ldb
,
0.3
,
c
,
ldc
,
relu
,
scale
,
bias
,
nullptr
);
int
eq
=
0
;
int
eq
=
0
;
int
neq
=
0
;
int
neq
=
0
;
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录