Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
0b753607
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0b753607
编写于
3月 23, 2020
作者:
Z
zhupengyang
提交者:
GitHub
3月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] cache om-models by inputs shape (#3242)
上级
5b2a618f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
80 addition
and
56 deletion
+80
-56
lite/backends/npu/device.cc
lite/backends/npu/device.cc
+4
-4
lite/backends/npu/device.h
lite/backends/npu/device.h
+2
-3
lite/core/mir/subgraph/subgraph_detector.cc
lite/core/mir/subgraph/subgraph_detector.cc
+1
-1
lite/core/mir/subgraph/subgraph_pass_test.cc
lite/core/mir/subgraph/subgraph_pass_test.cc
+8
-33
lite/kernels/npu/subgraph_compute.cc
lite/kernels/npu/subgraph_compute.cc
+45
-8
lite/kernels/npu/subgraph_compute.h
lite/kernels/npu/subgraph_compute.h
+20
-7
未找到文件。
lite/backends/npu/device.cc
浏览文件 @
0b753607
...
...
@@ -19,8 +19,8 @@ namespace paddle {
namespace
lite
{
namespace
npu
{
std
::
unique
_ptr
<
hiai
::
AiModelMngerClient
>
Device
::
Build
(
std
::
string
&
model_name
,
// NOLINT
std
::
shared
_ptr
<
hiai
::
AiModelMngerClient
>
Device
::
Build
(
const
std
::
string
model_name
,
// NOLINT
std
::
vector
<
ge
::
Operator
>&
input_nodes
,
// NOLINT
std
::
vector
<
ge
::
Operator
>&
output_nodes
// NOLINT
)
{
...
...
@@ -41,15 +41,15 @@ std::unique_ptr<hiai::AiModelMngerClient> Device::Build(
ir_build
.
ReleaseModelBuff
(
om_model_buf
);
return
nullptr
;
}
// Create a HiAI model manager client to load the HiAI om model
std
::
unique
_ptr
<
hiai
::
AiModelMngerClient
>
model_client
(
std
::
shared
_ptr
<
hiai
::
AiModelMngerClient
>
model_client
(
new
hiai
::
AiModelMngerClient
());
if
(
model_client
->
Init
(
nullptr
)
!=
hiai
::
AI_SUCCESS
)
{
LOG
(
WARNING
)
<<
"[NPU] AiModelMngerClient init failed)!"
;
ir_build
.
ReleaseModelBuff
(
om_model_buf
);
return
nullptr
;
}
model_name
=
"model_"
+
std
::
to_string
(
model_count_
++
)
+
".om"
;
auto
model_desc
=
std
::
make_shared
<
hiai
::
AiModelDescription
>
(
model_name
,
freq_level
(),
framework_type
(),
model_type
(),
device_type
());
model_desc
->
SetModelBuffer
(
om_model_buf
.
data
,
om_model_buf
.
length
);
...
...
lite/backends/npu/device.h
浏览文件 @
0b753607
...
...
@@ -40,8 +40,8 @@ class Device {
// Build the HiAI IR graph to om model, return HiAI model manager client to
// load om model and run inference.
std
::
unique
_ptr
<
hiai
::
AiModelMngerClient
>
Build
(
std
::
string
&
model_name
,
// NOLINT
std
::
shared
_ptr
<
hiai
::
AiModelMngerClient
>
Build
(
const
std
::
string
model_name
,
// NOLINT
std
::
vector
<
ge
::
Operator
>&
input_nodes
,
// NOLINT
std
::
vector
<
ge
::
Operator
>&
output_nodes
// NOLINT
);
// NOLINT
...
...
@@ -51,7 +51,6 @@ class Device {
int
framework_type_
{
0
};
int
model_type_
{
0
};
int
device_type_
{
0
};
int
model_count_
{
0
};
};
}
// namespace npu
...
...
lite/core/mir/subgraph/subgraph_detector.cc
浏览文件 @
0b753607
...
...
@@ -407,7 +407,7 @@ void SubgraphFuser::InsertNewNode(SSAGraph *graph,
cpp
::
OpDesc
subgraph_op_desc
;
subgraph_op_desc
.
SetType
(
"subgraph"
);
// Create a new sub block desc for storing all of Ops an Vars of the target
// Create a new sub block desc for storing all of Ops an
d
Vars of the target
// subgraph and sub_block_idx is set as a attribute of subgraph op,
// sub_block_idx < 0 means it's a new subgraph op
int
sub_block_idx
=
-
(
subgraph_idx
+
1
);
...
...
lite/core/mir/subgraph/subgraph_pass_test.cc
浏览文件 @
0b753607
...
...
@@ -17,6 +17,7 @@
#include "lite/api/paddle_api.h"
#include "lite/api/test_helper.h"
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"
DEFINE_string
(
model_file
,
""
,
"model file path of combined protobuf model"
);
DEFINE_string
(
params_file
,
""
,
"params file path of combined protobuf model"
);
...
...
@@ -31,43 +32,17 @@ namespace lite {
// The helper functions for loading and running model from command line and
// verifying output data
std
::
vector
<
std
::
string
>
TypeParsing
(
std
::
string
text
)
{
std
::
vector
<
std
::
string
>
types
;
while
(
!
text
.
empty
())
{
size_t
index
=
text
.
find_first_of
(
":"
);
std
::
string
type
=
text
.
substr
(
0
,
index
);
VLOG
(
3
)
<<
type
;
types
.
push_back
(
type
);
if
(
index
==
std
::
string
::
npos
)
{
break
;
}
else
{
text
=
text
.
substr
(
index
+
1
);
}
}
return
types
;
return
Split
(
text
,
":"
);
}
std
::
vector
<
std
::
vector
<
int64_t
>>
ShapeParsing
(
std
::
string
text
)
{
std
::
vector
<
std
::
vector
<
int64_t
>>
shapes
;
while
(
!
text
.
empty
())
{
size_t
index
=
text
.
find_first_of
(
":"
);
std
::
string
slice
=
text
.
substr
(
0
,
index
);
std
::
vector
<
int64_t
>
shape
;
while
(
!
slice
.
empty
())
{
size_t
index
=
slice
.
find_first_of
(
","
);
int
d
=
atoi
(
slice
.
substr
(
0
,
index
).
c_str
());
VLOG
(
3
)
<<
d
;
shape
.
push_back
(
d
);
if
(
index
==
std
::
string
::
npos
)
{
break
;
}
else
{
slice
=
slice
.
substr
(
index
+
1
);
}
}
shapes
.
push_back
(
shape
);
if
(
index
==
std
::
string
::
npos
)
{
break
;
}
else
{
text
=
text
.
substr
(
index
+
1
);
std
::
vector
<
std
::
string
>
shape_strings
=
Split
(
text
,
":"
);
shapes
.
resize
(
shape_strings
.
size
());
for
(
int
i
=
0
;
i
<
shape_strings
.
size
();
i
++
)
{
std
::
vector
<
std
::
string
>
shape_nums
=
Split
(
shape_strings
[
i
],
","
);
for
(
auto
shape_num
:
shape_nums
)
{
shapes
[
i
].
push_back
(
atoi
(
shape_num
.
c_str
()));
}
}
return
shapes
;
...
...
lite/kernels/npu/subgraph_compute.cc
浏览文件 @
0b753607
...
...
@@ -85,22 +85,31 @@ int SubgraphEngine::BuildDeviceProgram() {
<<
"[NPU] No input nodes found for building NPU model"
;
CHECK
(
!
device_onames_
.
empty
())
<<
"[NPU] No output nodes found for building NPU model"
;
// Build the HiAI IR graph to HiAI om model as the device program
device_program_
=
lite
::
npu
::
Device
::
Global
().
Build
(
if
(
device_program_map_
.
count
(
inputs_shape_
)
>
0
)
{
return
status
;
}
auto
device_client
=
lite
::
npu
::
Device
::
Global
().
Build
(
model_name_
,
device_inodes
,
device_onodes
);
if
(
device_
program_
==
nullptr
)
{
if
(
device_
client
==
nullptr
)
{
LOG
(
WARNING
)
<<
"[NPU] Build model failed!"
;
return
subgraph
::
FAILED
;
}
auto
device_program
=
std
::
make_shared
<
device_program_t
>
(
device_client
);
device_program_map_
[
inputs_shape_
]
=
device_program
;
// Query and check the dimensions of valid input and output tensors
std
::
vector
<
hiai
::
TensorDimension
>
device_idims
,
device_odims
;
if
(
device_program
_
->
GetModelIOTensorDim
(
if
(
device_program
->
client
->
GetModelIOTensorDim
(
model_name_
,
device_idims
,
device_odims
)
!=
hiai
::
AI_SUCCESS
)
{
LOG
(
WARNING
)
<<
"[NPU] Get the dimensions of input and output tensors failed!"
;
return
subgraph
::
FAILED
;
}
device_program
->
device_idims
=
device_idims
;
device_program
->
device_odims
=
device_odims
;
CHECK_EQ
(
device_idims
.
size
(),
device_inames_
.
size
());
CHECK_EQ
(
device_odims
.
size
(),
device_onames_
.
size
());
origin_idims_
.
resize
(
device_inames_
.
size
());
...
...
@@ -109,6 +118,7 @@ int SubgraphEngine::BuildDeviceProgram() {
origin_odims_
.
resize
(
device_onames_
.
size
());
origin_otensors_
.
resize
(
device_onames_
.
size
());
device_otensors_
.
resize
(
device_onames_
.
size
());
for
(
int
i
=
0
;
i
<
device_inames_
.
size
();
i
++
)
{
auto
node
=
graph
.
Get
(
device_inames_
[
i
]);
auto
precision
=
node
->
precision
();
...
...
@@ -130,6 +140,8 @@ int SubgraphEngine::BuildDeviceProgram() {
device_itensors_
[
i
].
reset
(
new
hiai
::
AiTensor
);
device_itensors_
[
i
]
->
Init
(
&
(
device_idims
[
i
]));
}
device_program
->
origin_idims
=
origin_idims_
;
for
(
int
i
=
0
;
i
<
device_onames_
.
size
();
i
++
)
{
auto
node
=
graph
.
Get
(
device_onames_
[
i
]);
auto
precision
=
node
->
precision
();
...
...
@@ -170,6 +182,8 @@ int SubgraphEngine::BuildDeviceProgram() {
<<
PrecisionToStr
(
precision
);
break
;
}
device_program
->
origin_odims
=
origin_odims_
;
CHECK_EQ
(
origin_odims_
[
i
].
production
(),
device_odims
[
i
].
GetNumber
()
*
device_odims
[
i
].
GetChannel
()
*
device_odims
[
i
].
GetHeight
()
*
device_odims
[
i
].
GetWidth
());
...
...
@@ -181,14 +195,25 @@ int SubgraphEngine::BuildDeviceProgram() {
int
SubgraphEngine
::
LaunchDeviceProgram
()
{
// Copy the data of origin input tensors to the buffer of input HiAI tensors
// init device_itensors_, device_otensors_, origin_otensors_
auto
device_program
=
device_program_map_
[
inputs_shape_
];
for
(
size_t
i
=
0
;
i
<
device_itensors_
.
size
();
i
++
)
{
device_itensors_
[
i
]
->
Init
(
&
(
device_program
->
device_idims
[
i
]));
std
::
memcpy
(
device_itensors_
[
i
]
->
GetBuffer
(),
origin_itensors_
[
i
]
->
raw_data
(),
origin_itensors_
[
i
]
->
memory_size
());
}
for
(
size_t
i
=
0
;
i
<
device_otensors_
.
size
();
i
++
)
{
device_otensors_
[
i
]
->
Init
(
&
(
device_program
->
device_odims
[
i
]));
}
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
i
++
)
{
origin_otensors_
[
i
]
->
Resize
(
device_program
->
origin_odims
[
i
]);
}
// Run the HiAI model by name
std
::
string
key
=
"model_name"
;
// Note: key seems must be model_name
model_context_
.
AddPara
(
key
,
model_name_
);
hiai
::
AiContext
model_context
;
model_context
.
AddPara
(
key
,
model_name_
);
auto
GetCurrentUS
=
[]()
->
double
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
...
...
@@ -196,11 +221,11 @@ int SubgraphEngine::LaunchDeviceProgram() {
};
int
istamp
;
auto
start_time
=
GetCurrentUS
();
CHECK_EQ
(
device_program_
->
Process
(
model_context_
,
device_itensors_
,
device_otensors_
,
1000
,
istamp
),
hiai
::
AI_SUCCESS
);
CHECK_EQ
(
device_program
->
client
->
Process
(
model_context
,
device_itensors_
,
device_otensors_
,
1000
,
istamp
),
hiai
::
AI_SUCCESS
);
VLOG
(
3
)
<<
"[NPU] Process cost "
<<
GetCurrentUS
()
-
start_time
<<
" us"
;
// Copy the data of output HiAI tensor to the buffer of origin output tensors
for
(
size_t
i
=
0
;
i
<
device_otensors_
.
size
();
i
++
)
{
std
::
memcpy
(
const_cast
<
void
*>
(
origin_otensors_
[
i
]
->
raw_data
()),
...
...
@@ -210,6 +235,18 @@ int SubgraphEngine::LaunchDeviceProgram() {
return
0
;
}
bool
SubgraphEngine
::
InputShapeChanged
()
{
std
::
vector
<
std
::
vector
<
int64_t
>>
new_shape
;
for
(
auto
origin_itensor
:
origin_itensors_
)
{
new_shape
.
push_back
(
origin_itensor
->
dims
().
Vectorize
());
}
inputs_shape_
=
new_shape
;
if
(
device_program_map_
.
count
(
inputs_shape_
)
>
0
)
{
return
false
;
}
return
true
;
}
void
SubgraphCompute
::
PrepareForRun
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
engine_
.
reset
(
new
SubgraphEngine
(
ctx_
.
get
(),
...
...
lite/kernels/npu/subgraph_compute.h
浏览文件 @
0b753607
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
...
...
@@ -38,17 +39,29 @@ class SubgraphEngine : public subgraph::Engine {
:
subgraph
::
Engine
(
ctx
,
block_idx
,
block_desc
,
input_names
,
output_names
,
scope
)
{}
struct
device_program_t
{
explicit
device_program_t
(
std
::
shared_ptr
<
hiai
::
AiModelMngerClient
>
_client
)
:
client
(
_client
)
{}
std
::
shared_ptr
<
hiai
::
AiModelMngerClient
>
client
{
nullptr
};
std
::
vector
<
DDim
>
origin_idims
{};
std
::
vector
<
DDim
>
origin_odims
{};
std
::
vector
<
hiai
::
TensorDimension
>
device_idims
{};
std
::
vector
<
hiai
::
TensorDimension
>
device_odims
{};
};
protected:
int
BuildDeviceProgram
()
override
;
int
LaunchDeviceProgram
()
override
;
bool
InputShapeChanged
()
override
;
std
::
string
model_name_
;
hiai
::
AiContext
model_context_
;
std
::
vector
<
std
::
string
>
device_inames_
;
std
::
vector
<
std
::
string
>
device_onames_
;
std
::
vector
<
std
::
shared_ptr
<
hiai
::
AiTensor
>>
device_itensors_
;
std
::
vector
<
std
::
shared_ptr
<
hiai
::
AiTensor
>>
device_otensors_
;
std
::
unique_ptr
<
hiai
::
AiModelMngerClient
>
device_program_
{
nullptr
};
std
::
string
model_name_
{
"model.om"
};
std
::
vector
<
std
::
vector
<
int64_t
>>
inputs_shape_
{};
std
::
map
<
std
::
vector
<
std
::
vector
<
int64_t
>>
,
std
::
shared_ptr
<
device_program_t
>>
device_program_map_
{};
std
::
vector
<
std
::
string
>
device_inames_
{};
std
::
vector
<
std
::
string
>
device_onames_
{};
std
::
vector
<
std
::
shared_ptr
<
hiai
::
AiTensor
>>
device_itensors_
{};
std
::
vector
<
std
::
shared_ptr
<
hiai
::
AiTensor
>>
device_otensors_
{};
};
class
SubgraphCompute
:
public
KernelLite
<
TARGET
(
kNPU
),
PRECISION
(
kAny
)
>
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录