未验证 提交 099d5e53 编写于 作者: Z zhangyang0701 提交者: GitHub

Merge branch 'develop' into my-cool-stuff

......@@ -78,6 +78,10 @@ void ConvAddBNReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -32,10 +32,8 @@ template <>
void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam<CPU> &param) {
switch (param.ExecMode()) {
case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1_FLOAT:
break;
case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2_FLOAT:
math::DepthwiseConv3x3S2<float, float>(*param.Input(), *param.Filter(),
param.Paddings(), param.Output());
DepthwiseConv3x3<float, float>(param);
break;
case ConvParam<CPU>::EXEC_DEPTHWISE5x5_FLOAT:
DepthwiseConv5x5<float, float>(param);
......@@ -46,6 +44,10 @@ void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam<CPU> &param) {
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -45,6 +45,10 @@ void ConvAddReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -76,6 +76,10 @@ void ConvBNAddReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -75,6 +75,10 @@ void ConvBNReluKernel<CPU, float>::Compute(
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -57,8 +57,8 @@ void InitBaseConvKernel(ConvParam<CPU> *param) {
param->Dilations()[0] == param->Dilations()[1] &&
param->Strides()[0] == 1 && param->Dilations()[0] == 1
#if 1
&& (param->Input()->dims()[1] >= 4 ||
param->Output()->dims()[1] >= 16)
&& (param->Input()->dims()[1] >= 8 &&
param->Output()->dims()[1] >= 8)
#endif
) {
param->ExecMode() = ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT;
......@@ -66,6 +66,26 @@ void InitBaseConvKernel(ConvParam<CPU> *param) {
param->transformed_filter_ = new framework::LoDTensor;
operators::math::winograd_transform_weight<8, 3>(
*param->Filter(), param->transformed_filter_);
} else if (conv3x3 && !depth3x3 &&
param->Strides()[0] == param->Strides()[1] &&
param->Dilations()[0] == param->Dilations()[1] &&
param->Strides()[0] == 1 && param->Dilations()[0] == 1
#if 1
&& (param->Input()->dims()[2] >= 48 &&
param->Output()->dims()[1] <= 24)
#endif
) {
param->ExecMode() = ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT;
} else if (conv3x3 && !depth3x3 &&
param->Strides()[0] == param->Strides()[1] &&
param->Dilations()[0] == param->Dilations()[1] &&
param->Strides()[0] == 2 && param->Dilations()[0] == 1
#if 1
&& (param->Input()->dims()[2] >= 48 &&
param->Output()->dims()[1] <= 24)
#endif
) {
param->ExecMode() = ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT;
} else {
param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_FLOAT;
}
......
......@@ -54,6 +54,10 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) {
case ConvParam<CPU>::EXEC_GEMM_FLOAT:
GemmConv<float, float>(param);
break;
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S1_FLOAT:
case ConvParam<CPU>::EXEC_SLIDINGWINDOW3x3S2_FLOAT:
SlidingwindowConv3x3<float, float>(param);
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
param.ExecMode());
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
#include "operators/math/slidingwindow_conv3x3.h"
#include "operators/math/vol2col.h"
#include "operators/math/winograd/winograd_transform.h"
#include "operators/op_param.h"
......@@ -232,10 +233,29 @@ void DepthwiseConv5x5(const ConvParam<CPU> &param) {
}
}
template <typename Itype, typename Otype>
void SlidingwindowConv3x3(const ConvParam<CPU> &param) {
const Tensor *input = param.Input();
const Tensor *filter = param.Filter();
const std::vector<int> &paddings = param.Paddings();
const std::vector<int> &strides = param.Strides();
Tensor *output = param.Output();
output->mutable_data<Otype>();
if (strides[0] == 1) {
math::SlidingwindowConv3x3s1<Itype, Otype>(input, filter, paddings, output);
} else if (strides[0] == 2) {
math::SlidingwindowConv3x3s2<Itype, Otype>(input, filter, paddings, output);
} else {
GemmConv<Itype, Otype>(param);
}
}
template void GemmConv<float, float>(const ConvParam<CPU> &param);
template void WinogradConv3x3<8, 3>(const ConvParam<CPU> &param);
template void DepthwiseConv3x3<float, float>(const ConvParam<CPU> &param);
template void DepthwiseConv5x5<float, float>(const ConvParam<CPU> &param);
template void SlidingwindowConv3x3<float, float>(const ConvParam<CPU> &param);
#ifndef __aarch64__
template void GemmConv<int8_t, int32_t>(const ConvParam<CPU> &param);
......
......@@ -41,6 +41,9 @@ void DepthwiseConv3x3(const ConvParam<CPU> &param);
template <typename Itype, typename Otype>
void DepthwiseConv5x5(const ConvParam<CPU> &param);
template <typename Itype, typename Otype>
void SlidingwindowConv3x3(const ConvParam<CPU> &param);
} // namespace operators
} // namespace paddle_mobile
......
此差异已折叠。
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <typename Itype, typename Otype>
void SlidingwindowConv3x3s1(const framework::Tensor *input,
const framework::Tensor *filter,
const std::vector<int> &paddings,
framework::Tensor *output);
template <typename Itype, typename Otype>
void SlidingwindowConv3x3s2(const framework::Tensor *input,
const framework::Tensor *filter,
const std::vector<int> &paddings,
framework::Tensor *output);
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -476,6 +476,8 @@ class ConvParam : public OpParam {
EXEC_GEMM_INT8,
EXEC_DEPTHWISE3x3_INT8,
EXEC_DEPTHWISE5x5_INT8,
EXEC_SLIDINGWINDOW3x3S1_FLOAT,
EXEC_SLIDINGWINDOW3x3S2_FLOAT,
};
ExecMode &ExecMode() const { return exec_mode_; }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册