Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
082f2360
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
082f2360
编写于
10月 26, 2018
作者:
R
Ray Liu
提交者:
GitHub
10月 26, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1211 from codeWorm2015/opencl
commit for test
上级
0193c814
df53e7f9
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
269 addition
and
91 deletion
+269
-91
CMakeLists.txt
CMakeLists.txt
+1
-1
src/operators/kernel/cl/cl_kernel/batchnorm_kernel.cl
src/operators/kernel/cl/cl_kernel/batchnorm_kernel.cl
+15
-2
src/operators/kernel/cl/cl_kernel/channel_add_kernel.cl
src/operators/kernel/cl/cl_kernel/channel_add_kernel.cl
+1
-0
src/operators/kernel/cl/cl_kernel/cl_common.h
src/operators/kernel/cl/cl_kernel/cl_common.h
+2
-0
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
+0
-1
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
+0
-1
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+147
-60
src/operators/kernel/cl/cl_kernel/depthwise_conv_add_bn_relu_kernel.cl
.../kernel/cl/cl_kernel/depthwise_conv_add_bn_relu_kernel.cl
+1
-1
src/operators/kernel/cl/cl_kernel/depthwise_conv_kernel.cl
src/operators/kernel/cl/cl_kernel/depthwise_conv_kernel.cl
+1
-1
src/operators/kernel/cl/cl_kernel/elementwise_add_kernel.cl
src/operators/kernel/cl/cl_kernel/elementwise_add_kernel.cl
+1
-0
src/operators/kernel/cl/cl_kernel/feed_kernel.cl
src/operators/kernel/cl/cl_kernel/feed_kernel.cl
+14
-0
src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
+14
-0
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
+15
-1
src/operators/kernel/cl/cl_kernel/relu.cl
src/operators/kernel/cl/cl_kernel/relu.cl
+2
-1
src/operators/kernel/cl/cl_kernel/softmax.cl
src/operators/kernel/cl/cl_kernel/softmax.cl
+3
-3
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+30
-2
test/framework/test_load.cpp
test/framework/test_load.cpp
+18
-4
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+3
-12
test/net/test_yologpu.cpp
test/net/test_yologpu.cpp
+1
-1
未找到文件。
CMakeLists.txt
浏览文件 @
082f2360
...
...
@@ -26,7 +26,7 @@ if (DEBUGING)
message
(
STATUS
"debug"
)
set
(
CMAKE_BUILD_TYPE Release
)
set
(
CMAKE_CXX_FLAGS_RELEASE
"-DNDEBUG"
)
add_definitions
(
-DPADDLE_MOBILE_DEBUG
)
#
add_definitions(-DPADDLE_MOBILE_DEBUG)
else
()
set
(
CMAKE_BUILD_TYPE Release
)
set
(
CMAKE_CXX_FLAGS_RELEASE
"-DNDEBUG"
)
...
...
src/operators/kernel/cl/cl_kernel/batchnorm_kernel.cl
浏览文件 @
082f2360
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
batchnorm
(
__private
const
int
out_height,
__private
const
int
out_width,
__kernel
void
batchnorm
(
__private
const
int
out_width,
__read_only
image2d_t
input,
__read_only
image2d_t
new_scale_image,
__read_only
image2d_t
new_bias_image,
...
...
src/operators/kernel/cl/cl_kernel/channel_add_kernel.cl
浏览文件 @
082f2360
...
...
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
channel_add
(
__global
image2d_t
input,
__global
image2d_t
bias,__write_only
image2d_t
outputImage,int
w
)
{
int
x
=
get_global_id
(
0
)
;
...
...
src/operators/kernel/cl/cl_kernel/cl_common.h
浏览文件 @
082f2360
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
inline
half4
activation
(
half4
in
...
...
src/operators/kernel/cl/cl_kernel/conv_add_bn_relu_kernel.cl
浏览文件 @
082f2360
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
define
BIASE
#
define
BATCH_NORM
#
define
RELU
...
...
src/operators/kernel/cl/cl_kernel/conv_add_kernel.cl
浏览文件 @
082f2360
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
define
BIASE
#
include
"conv_kernel.inc.cl"
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
082f2360
...
...
@@ -56,7 +56,6 @@ __kernel void conv_3x3(__private const int global_size_dim0,
if
(
out_c
>=
global_size_dim0
|
|
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
printf(" out of range ");
return;
}
...
...
@@ -134,22 +133,22 @@ __kernel void conv_3x3(__private const int global_size_dim0,
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
for (int j = 0; j < 9; ++j) {
int2
fuck
;
fuck
.x = i * 3 + j % 3;
fuck
.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler,
fuck
);
int2
pos_of_weight
;
pos_of_weight
.x = i * 3 + j % 3;
pos_of_weight
.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler,
pos_of_weight
);
output.x += dot(input[j], weight_x);
fuck
.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler,
fuck
);
pos_of_weight
.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler,
pos_of_weight
);
output.y += dot(input[j], weight_y);
fuck
.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler,
fuck
);
pos_of_weight
.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler,
pos_of_weight
);
output.z += dot(input[j], weight_z);
fuck
.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler,
fuck
);
pos_of_weight
.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler,
pos_of_weight
);
output.w += dot(input[j], weight_w);
}
}
...
...
@@ -321,6 +320,7 @@ __kernel void depth_conv_3x3(__private const int global_size_dim0,
}
__kernel void conv_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
@@ -349,92 +349,179 @@ __kernel void conv_1x1(__private const int global_size_dim0,
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
half4 output = 0.0f;
#endif
int
out_c_p
=
0
,
out_w_p
=
0
,
out_nh_p
=
0
;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
half4 input = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
/*
if
(
out_c
==
out_c_p
&&
out_w
==
out_w_p
&&
out_nh
==
out_nh_p
)
{
float4
out
=
(
float4
)(
output.x,
output.y,
output.z,
output.w
)
;
printf
(
" after bias output4 = %v4hlf \n"
,
out
)
;
output.x = dot(input, weight0);
output.y = dot(input, weight1);
output.z = dot(input, weight2);
output.w = dot(input, weight3);
*/
}
output = mad(input.x, weight0, output);
output = mad(input.y, weight1, output);
output = mad(input.z, weight2, output);
output = mad(input.w, weight3, output);
*/
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
/*
__kernel void conv_1x1_4(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,
__private const int input_height,
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0) * 4;
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST
;
int2
stride_xy
=
(
int2
)(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
(
int2
)(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
(
int2
)(
offset,
offset
)
;
#
ifdef
BIASE
half4
output0
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c,
0
))
;
half4
output1
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c
+
1
,
0
))
;
half4
output2
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c
+
2
,
0
))
;
half4
output3
=
read_imageh
(
bias,
sampler,
(
int2
)(
out_c
+
3
,
0
))
;
#
else
half4
output0
=
0.0f
;
half4
output1
=
0.0f
;
half4
output2
=
0.0f
;
half4
output3
=
0.0f
;
#
endif
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
(
int2
)(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
half4
input
=
read_imageh
(
input_image,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight0_0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
0
))
;
half4
weight0_1
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
1
))
;
half4
weight0_2
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
2
))
;
half4
weight0_3
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c,
i
*
4
+
3
))
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
output0
=
mad
(
input.x,
weight0_0,
output0
)
;
output0
=
mad
(
input.y,
weight0_1,
output0
)
;
output0
=
mad
(
input.z,
weight0_2,
output0
)
;
output0
=
mad
(
input.w,
weight0_3,
output0
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight1_0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
1
,
i
*
4
+
0
))
;
half4
weight1_1
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
1
,
i
*
4
+
1
))
;
half4
weight1_2
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
1
,
i
*
4
+
2
))
;
half4
weight1_3
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
1
,
i
*
4
+
3
))
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
(
int2
)(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
/*
if
(
out_c
==
out_c_p
&&
out_w
==
out_w_p
&&
out_nh
==
out_nh_p
)
{
printf
(
"x - %d \n"
,
pos_in.x
)
;
output1
=
mad
(
input.x,
weight1_0,
output1
)
;
output1
=
mad
(
input.y,
weight1_1,
output1
)
;
output1
=
mad
(
input.z,
weight1_2,
output1
)
;
output1
=
mad
(
input.w,
weight1_3,
output1
)
;
printf
(
"y - %d \n"
,
pos_in.y
)
;
half4
weight2_0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
2
,
i
*
4
+
0
))
;
half4
weight2_1
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
2
,
i
*
4
+
1
))
;
half4
weight2_2
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
2
,
i
*
4
+
2
))
;
half4
weight2_3
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
2
,
i
*
4
+
3
))
;
float4
in
=
(
float4
)(
input.x,
input.y,
input.z,
input.w
)
;
printf
(
"input4 = %v4hlf \n"
,
in
)
;
output2
=
mad
(
input.x,
weight2_0,
output2
)
;
output2
=
mad
(
input.y,
weight2_1,
output2
)
;
output2
=
mad
(
input.z,
weight2_2,
output2
)
;
output2
=
mad
(
input.w,
weight2_3,
output2
)
;
float4
w
=
(
float4
)(
weight_x.x,
weight_x.y,
weight_x.z,
weight_x.w
)
;
printf
(
"weight4 = %v4hlf \n"
,
w
)
;
half4
weight3_0
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
3
,
i
*
4
+
0
))
;
half4
weight3_1
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
3
,
i
*
4
+
1
))
;
half4
weight3_2
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
3
,
i
*
4
+
2
))
;
half4
weight3_3
=
read_imageh
(
filter,
sampler,
(
int2
)(
out_c
+
3
,
i
*
4
+
3
))
;
}
*/
}
/*
if
(
out_c
==
out_c_p
&&
out_w
==
out_w_p
&&
out_nh
==
out_nh_p
)
{
float4
out
=
(
float4
)(
output.x,
output.y,
output.z,
output.w
)
;
printf
(
"output4 = %v4hlf \n"
,
out
)
;
output3
=
mad
(
input.x,
weight3_0,
output3
)
;
output3
=
mad
(
input.y,
weight3_1,
output3
)
;
output3
=
mad
(
input.z,
weight3_2,
output3
)
;
output3
=
mad
(
input.w,
weight3_3,
output3
)
;
}
*/
}
#
ifdef
BATCH_NORM
output
=
output
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c,
0
))
;
#
endif
output0
=
output0
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c
+
0
,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c
+
0
,
0
))
;
/*
if
(
out_c
==
out_c_p
&&
out_w
==
out_w_p
&&
out_nh
==
out_nh_p
)
{
float4
out
=
(
float4
)(
output.x,
output.y,
output.z,
output.w
)
;
printf
(
" after batch output4 = %v4hlf \n"
,
out
)
;
output1
=
output1
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c
+
1
,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c
+
1
,
0
))
;
}
output2
=
output2
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c
+
2
,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c
+
2
,
0
))
;
*/
output3
=
output3
*
read_imageh
(
new_scale,
sampler,
(
int2
)(
out_c
+
3
,
0
))
+
read_imageh
(
new_biase,
sampler,
(
int2
)(
out_c
+
3
,
0
))
;
#
endif
#
ifdef
RELU
output
=
activation
(
output
)
;
output0
=
activation
(
output0
)
;
output1
=
activation
(
output1
)
;
output2
=
activation
(
output2
)
;
output3
=
activation
(
output3
)
;
#
endif
/*
if
(
out_c
==
out_c_p
&&
out_w
==
out_w_p
&&
out_nh
==
out_nh_p
)
{
float4
out
=
(
float4
)(
output.x,
output.y,
output.z,
output.w
)
;
printf
(
" after relu output4 = %v4hlf \n"
,
out
)
;
int2
output_pos0
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos0,
output0
)
;
}
*/
int2
output_pos1
=
(
int2
)((
out_c
+
1
)
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos1,
output1
)
;
int2
output_pos
=
(
int2
)(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
int2
output_pos2
=
(
int2
)((
out_c
+
2
)
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos2,
output2
)
;
int2
output_pos3
=
(
int2
)((
out_c
+
3
)
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos3,
output3
)
;
}
*/
src/operators/kernel/cl/cl_kernel/depthwise_conv_add_bn_relu_kernel.cl
浏览文件 @
082f2360
...
...
@@ -15,4 +15,4 @@ limitations under the License. */
#
define
BIASE
#
define
BATCH_NORM
#
define
RELU
#
include
"conv_kernel.inc.cl"
\ No newline at end of file
#
include
"conv_kernel.inc.cl"
src/operators/kernel/cl/cl_kernel/depthwise_conv_kernel.cl
浏览文件 @
082f2360
...
...
@@ -12,4 +12,4 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
"conv_kernel.inc.cl"
\ No newline at end of file
#
include
"conv_kernel.inc.cl"
src/operators/kernel/cl/cl_kernel/elementwise_add_kernel.cl
浏览文件 @
082f2360
...
...
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
elementwise_add
(
__global
image2d_t
input,
__global
image2d_t
bias,__write_only
image2d_t
outputImage
)
{
int
x
=
get_global_id
(
0
)
;
...
...
src/operators/kernel/cl/cl_kernel/feed_kernel.cl
浏览文件 @
082f2360
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
feed
(
__global
float
*in,
__write_only
image2d_t
outputImage,int
h,int
w
)
{
...
...
src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
浏览文件 @
082f2360
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
fetch
(
__private
const
int
in_height,
...
...
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
浏览文件 @
082f2360
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
#
define
MIN_VALUE
-FLT_MAX
...
...
@@ -72,4 +86,4 @@ __kernel void pool_avg(
half4
avg
=
sum
/
num
;
const
int
pos_out_x
=
mad24
(
out_c,
out_width,
out_w
)
;
write_imageh
(
output,
(
int2
)(
pos_out_x,
out_nh
)
,
avg
)
;
}
\ No newline at end of file
}
src/operators/kernel/cl/cl_kernel/relu.cl
浏览文件 @
082f2360
...
...
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
relu
(
__read_only
image2d_t
input,
...
...
@@ -54,4 +55,4 @@ __kernel void relu_p1(__read_only image2d_t input,
half4
in
=
read_imageh
(
input,
sampler,
(
int2
)(
x,
y
))
;
write_imageh
(
output,
(
int2
)(
x,
y
)
,
in
)
;
}
\ No newline at end of file
}
src/operators/kernel/cl/cl_kernel/softmax.cl
浏览文件 @
082f2360
...
...
@@ -33,17 +33,17 @@ __kernel void softmax(__read_only image2d_t input_image,
maxv
=
max
(
maxv,
max
(
temp.x,
max
(
temp.y,
max
(
temp.z,
temp.w
))))
;
}
half4
rsum
=
(
half4
)(
0.0f
)
;
for
(
int
i
=
0
; i < group; ++i) {
half4
r
=
read_imageh
(
input_image,
sampler,
(
int2
)(
i,
0
))
;
rsum
+=
convert_half4
(
exp
(
convert_float4
(
r
-
maxv
))
)
;
rsum
+=
exp
(
r
-
maxv
)
;
}
float
sum
=
rsum.x
+
rsum.y
+
rsum.z
+
rsum.w
;
half4
rr
=
read_imageh
(
input_image,
sampler,
(
int2
)(
out_w,
out_nh
))
;
half4
result
=
convert_half4
(
exp
(
convert_float4
(
rr
-
maxv
))
/
sum
)
;
half4
result
=
exp
(
rr
-
maxv
)
/
sum
;
write_imageh
(
output_image,
(
int2
)(
out_w,
out_nh
)
,
result
)
;
}
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
082f2360
...
...
@@ -125,10 +125,21 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
param
->
SetOffset
(
offset
);
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
/*
if (param->Filter()->dims()[2] == 1 &&
param->Filter()->dims()[3] == 1 &&
(param->Filter()->dims()[0] % 16) == 0) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_1x1_4", "conv_add_bn_relu_kernel.cl");
DLOG << " conv add bn relu conv 1x1 4";
}
*/
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
DLOG
<<
" conv add bn relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
...
...
@@ -249,6 +260,23 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
/*
if (param.Filter()->dims()[2] == 1 &&
param.Filter()->dims()[3] == 1 &&
param.Filter()->dims()[0] % 16 == 0) {
DLOG << " before modifi work size: " << default_work_size;
default_work_size[0] = default_work_size[0] / 4;
DLOG << " modification work size: " << default_work_size;
DLOG << " input dims " << param.Input()->dims();
DLOG << " output dims " << param.Output()->dims();
DLOG << " filter dims: " << param.Filter()->dims();
DLOG << " biase dims : " << param.Bias()->dims();
}
*/
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
...
...
test/framework/test_load.cpp
浏览文件 @
082f2360
...
...
@@ -13,19 +13,33 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <iostream>
#include "../test_helper.h"
#include "framework/loader.h"
int
main
()
{
paddle_mobile
::
framework
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
paddle_mobile
::
framework
::
Loader
<
paddle_mobile
::
GPU_CL
>
loader
;
// ../../../test/models/googlenet
// ../../../test/models/mobilenet
// auto program = loader.Load(g_googlenet, true);
std
::
cout
<<
" Begin load mobilenet "
<<
std
::
endl
;
auto
program
=
loader
.
Load
(
std
::
string
(
g_mobilenet_mul
),
true
);
std
::
cout
<<
" End load mobilenet "
<<
std
::
endl
;
std
::
cout
<<
" Begin load YOLO "
<<
std
::
endl
;
auto
program1
=
loader
.
Load
(
std
::
string
(
g_yolo_mul
),
true
);
std
::
cout
<<
" End load YOLO "
<<
std
::
endl
;
// auto program = loader.Load(g_mobilenet_ssd, true);
auto
program
=
loader
.
Load
(
std
::
string
(
g_ocr
)
+
"/model"
,
std
::
string
(
g_ocr
)
+
"/params"
,
false
);
//
auto program = loader.Load(std::string(g_ocr) + "/model",
//
std::string(g_ocr) + "/params", false);
// program.originProgram->Description("program desc: ");
return
0
;
}
test/net/test_mobilenet_GPU.cpp
浏览文件 @
082f2360
...
...
@@ -23,7 +23,7 @@ int main() {
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
true
);
auto
isok
=
paddle_mobile
.
Load
(
std
::
string
(
g_mobilenet
)
,
true
);
if
(
isok
)
{
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time2
)
<<
"ms"
...
...
@@ -33,24 +33,15 @@ int main() {
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224_banana
,
&
input
,
dims
);
std
::
vector
<
float
>
vec_result
;
// = paddle_mobile.Predict(input, dims);
std
::
vector
<
float
>
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
auto
time3
=
paddle_mobile
::
time
();
int
max
=
1
;
int
max
=
1
0
;
for
(
int
i
=
0
;
i
<
max
;
++
i
)
{
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
auto
time4
=
paddle_mobile
::
time
();
// auto time3 = paddle_mobile::time();
// for (int i = 0; i < 10; ++i) {
// auto vec_result = paddle_mobile.Predict(input, dims);
// }
// auto time4 = paddle_mobile::time();
std
::
cout
<<
"predict cost :"
<<
paddle_mobile
::
time_diff
(
time3
,
time4
)
/
max
<<
"ms"
<<
std
::
endl
;
...
...
test/net/test_yologpu.cpp
浏览文件 @
082f2360
...
...
@@ -23,7 +23,7 @@ int main() {
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto
isok
=
paddle_mobile
.
Load
(
g_yolo_mul
,
true
);
auto
isok
=
paddle_mobile
.
Load
(
std
::
string
(
g_yolo_mul
)
,
true
);
if
(
isok
)
{
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time2
)
<<
"ms"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录