提交 0724abba 编写于 作者: P Pei Yang 提交者: GitHub

add cuda kernel:lookup table, test=develop (#2403)

add cuda kernel:lookup table
上级 f85c3689
......@@ -22,6 +22,7 @@ add_kernel(dropout_compute_cuda CUDA basic SRCS dropout_compute.cc DEPS ${lite_k
add_kernel(softmax_compute_cuda CUDA basic SRCS softmax_compute.cu DEPS ${lite_kernel_deps})
add_kernel(pool_compute_cuda CUDA basic SRCS pool_compute.cu DEPS ${lite_kernel_deps})
add_kernel(bilinear_interp_compute_cuda CUDA basic SRCS bilinear_interp_compute.cu DEPS ${lite_kernel_deps})
add_kernel(lookup_table_compute_cuda CUDA extra SRCS lookup_table_compute.cu DEPS ${lite_kernel_deps})
lite_cc_test(calib_compute_cuda_test SRCS calib_compute_cuda_test.cc DEPS calib_compute_cuda)
nv_test(conv2d_cuda_test SRCS conv_compute_test.cc DEPS conv2d_cuda)
......@@ -37,3 +38,6 @@ nv_test(softmax_compute_cuda_test SRCS softmax_compute_test.cc DEPS softmax_comp
nv_test(mul_compute_cuda_test SRCS mul_compute_test.cc DEPS mul_compute_cuda)
nv_test(dropout_compute_cuda_test SRCS dropout_compute_test.cc DEPS dropout_compute_cuda )
nv_test(bilinear_interp_compute_cuda_test SRCS bilinear_interp_compute_test.cc DEPS bilinear_interp_compute_cuda)
if(LITE_BUILD_EXTRA)
nv_test(lookup_table_compute_cuda_test SRCS lookup_table_compute_test.cc DEPS lookup_table_compute_cuda)
endif()
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/lookup_table_compute.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
template <int BlockDimX, int BlockDimY, int GridDimX, bool PaddingFlag>
__global__ void LookupTableKernel(float *output,
const float *table,
const int64_t *ids,
const int64_t N,
const int64_t K,
const int64_t D,
const int64_t padding_idx) {
int idx = threadIdx.x;
int idy = blockIdx.x + threadIdx.y * GridDimX;
while (idy < K) {
int64_t id = ids[idy];
float *out = output + idy * D;
const float *tab = table + id * D;
for (int i = idx; i < D; i += BlockDimX) {
if (PaddingFlag) {
if (id == padding_idx)
out[i] = static_cast<float>(0);
else
out[i] = tab[i];
} else {
out[i] = tab[i];
}
}
idy += BlockDimY * GridDimX;
}
}
void LookupTableCompute::Run() {
auto &param = this->Param<param_t>();
auto &ctx = this->ctx_->template As<CUDAContext>();
auto stream = ctx.exec_stream();
Tensor *w_t = param.W;
Tensor *ids_t = param.Ids;
Tensor *out_t = param.Out;
int64_t padding_idx = param.padding_idx;
size_t N = w_t->dims()[0];
size_t D = w_t->dims()[1];
size_t K = ids_t->numel();
auto *w = w_t->data<float>();
auto *ids = ids_t->data<int64_t>();
auto *out = out_t->mutable_data<float>(TARGET(kCUDA));
dim3 threads(128, 8);
dim3 grids(8, 1);
if (padding_idx == -1) {
LookupTableKernel<128, 8, 8, false><<<grids, threads, 0, stream>>>(
out, w, ids, N, K, D, padding_idx);
} else {
LookupTableKernel<128, 8, 8, true><<<grids, threads, 0, stream>>>(
out, w, ids, N, K, D, padding_idx);
}
cudaError_t error = cudaGetLastError();
if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(lookup_table,
kCUDA,
kFloat,
kNCHW,
paddle::lite::kernels::cuda::LookupTableCompute,
def)
.BindInput("W", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat))})
.BindInput("Ids", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt64))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
class LookupTableCompute
: public KernelLite<TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
public:
using param_t = operators::LookupTableParam;
void Run() override;
virtual ~LookupTableCompute() = default;
};
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/cuda/lookup_table_compute.h"
#include <gtest/gtest.h>
#include <cmath>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
void LookupTableComputeRef(const operators::LookupTableParam& param) {
auto* ids_t = param.Ids;
auto* output_t = param.Out;
int64_t padding_idx = param.padding_idx;
auto* ids = ids_t->data<int64_t>();
int64_t ids_numel = ids_t->dims().production();
auto* table_t = param.W;
int64_t row_number = table_t->dims()[0];
int64_t row_width = table_t->dims()[1];
auto* table = table_t->data<float>();
auto* output = output_t->mutable_data<float>();
memset(output, 0, output_t->dims().production() * sizeof(float));
for (int64_t i = 0; i < ids_numel; ++i) {
if (padding_idx != -1 && ids[i] == padding_idx) {
memset(output + i * row_width, 0, row_width * sizeof(float));
} else {
CHECK_LT(ids[i], row_number);
CHECK_GE(ids[i], 0);
memcpy(output + i * row_width,
table + ids[i] * row_width,
row_width * sizeof(float));
}
}
}
TEST(lookup_table_cuda, retrieve_op) {
auto lookup_table =
KernelRegistry::Global().Create<TARGET(kCUDA), PRECISION(kFloat)>(
"lookup_table");
ASSERT_FALSE(lookup_table.empty());
ASSERT_TRUE(lookup_table.front());
}
TEST(lookup_table_cuda, init) {
LookupTableCompute lookup_table;
ASSERT_EQ(lookup_table.precision(), PRECISION(kFloat));
ASSERT_EQ(lookup_table.target(), TARGET(kCUDA));
}
TEST(lookup_table_cuda, compute) {
LookupTableCompute lookup_table;
std::unique_ptr<KernelContext> ctx(new KernelContext);
auto& context = ctx->As<CUDAContext>();
operators::LookupTableParam param;
Tensor w, ids, out;
Tensor w_cpu, ids_cpu, out_cpu;
Tensor w_ref, ids_ref, out_ref;
int64_t padding_idx = 0;
int vocab_size = 128;
int emb_size = 64;
int ids_h = 50;
int ids_w = 30;
auto w_dim = DDim({vocab_size, emb_size});
auto ids_dim = DDim({ids_h, ids_w});
auto out_dim = DDim({ids_h, ids_w, emb_size});
int w_num = w_dim.production();
int ids_num = ids_dim.production();
int out_num = out_dim.production();
w.Resize(w_dim);
ids.Resize(ids_dim);
out.Resize(out_dim);
w_cpu.Resize(w_dim);
ids_cpu.Resize(ids_dim);
out_cpu.Resize(out_dim);
w_ref.Resize(w_dim);
ids_ref.Resize(ids_dim);
out_ref.Resize(out_dim);
auto* out_data = out.mutable_data<float>(TARGET(kCUDA));
auto* w_cpu_data = w_cpu.mutable_data<float>();
auto* ids_cpu_data = ids_cpu.mutable_data<int64_t>();
auto* out_cpu_data = out_cpu.mutable_data<float>();
auto* w_ref_data = w_ref.mutable_data<float>();
auto* ids_ref_data = ids_ref.mutable_data<int64_t>();
auto* out_ref_data = out_ref.mutable_data<float>();
// generate test data
for (int i = 0; i < w_num; i++) {
w_cpu_data[i] = static_cast<float>(i + 1) / (w_num + 1);
w_ref_data[i] = static_cast<float>(i + 1) / (w_num + 1);
}
for (int i = 0; i < ids_num; i++) {
ids_cpu_data[i] = i % vocab_size;
ids_ref_data[i] = i % vocab_size;
}
w.Assign<float, lite::DDim, TARGET(kCUDA)>(w_cpu_data, w_dim);
ids.Assign<int64_t, lite::DDim, TARGET(kCUDA)>(ids_cpu_data, ids_dim);
param.W = &w;
param.Ids = &ids;
param.Out = &out;
param.padding_idx = padding_idx;
lookup_table.SetParam(param);
// run cuda kernel
cudaStream_t stream;
cudaStreamCreate(&stream);
context.SetExecStream(stream);
lookup_table.SetContext(std::move(ctx));
lookup_table.Launch();
cudaDeviceSynchronize();
CopySync<TARGET(kCUDA)>(
out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
// run ref kernel
param.W = &w_ref;
param.Ids = &ids_ref;
param.Out = &out_ref;
LookupTableComputeRef(param);
for (int i = 0; i < out_num; i++) {
EXPECT_NEAR(out_cpu_data[i], out_ref_data[i], 1e-5);
}
}
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(lookup_table, kCUDA, kFloat, kNCHW, def);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册