提交 06d9d470 编写于 作者: C cc 提交者: GitHub

fix useless refer in doc, test=develop, test=document_fix (#2982)

上级 bbded8a3
......@@ -4,7 +4,7 @@
## 编译方法:
1. 参照 [编译安装](../source_compile) 中的**full_publish**部分进行环境配置和编译。
1. 参照 [编译安装](../installation/source_compile) 中的**full_publish**部分进行环境配置和编译。
2. 在生成的`build`目录下,执行`make lite_model_debug_tool``lite_model_debug_tool`产出在编译目录的`lite/tools/debug`目录下。
## 工作流程:
......
......@@ -4,7 +4,7 @@ Basic profiler 用于 CPU 上kernel 耗时的统计。
## 开启方法:
参照 [编译安装](../source_compile) 中的**full_publish**部分进行环境配置,在 cmake 时添加 `-DLITE_WITH_PROFILER=ON` ,就可以开启相应支持。
参照 [编译安装](../installation/source_compile) 中的**full_publish**部分进行环境配置,在 cmake 时添加 `-DLITE_WITH_PROFILER=ON` ,就可以开启相应支持。
## 使用示例:
......
......@@ -57,7 +57,7 @@ wget -c https://paddle-inference-dist.bj.bcebos.com/PaddleLite/benchmark_0/bench
#### 方式二:由源码编译benchmark_bin文件
根据[源码编译](../source_compile)准备编译环境,拉取PaddleLite最新release发布版代码,并在仓库根目录下,执行:
根据[源码编译](../installation/source_compile)准备编译环境,拉取PaddleLite最新release发布版代码,并在仓库根目录下,执行:
```shell
###########################################
......
......@@ -2,7 +2,7 @@
## 编译
首先按照[PaddleLite 源码编译](https://github.com/PaddlePaddle/Paddle-Lite/wiki/source_compile)准备交叉编译环境,之后拉取最新[PaddleLite release发布版代码](https://github.com/PaddlePaddle/Paddle-Lite)。下面以Android-ARMv8架构为例,介绍编译过程,并最终在手机上跑通MobilNetv1模型。
首先按照[PaddleLite 源码编译](../installation/source_compile)准备交叉编译环境,之后拉取最新[PaddleLite release发布版代码](https://github.com/PaddlePaddle/Paddle-Lite)。下面以Android-ARMv8架构为例,介绍编译过程,并最终在手机上跑通MobilNetv1模型。
进入 Paddle-Lite 目录,运行以下命令编译代码(**需加编译选项`--build_extra=ON`确保完整编译**):
......
......@@ -9,7 +9,7 @@
## 编译
首先在PaddleLite的开发 [Docker镜像](../source_compile) 中,拉取最新PaddleLite代码,编译对应你手机架构的预测库,
首先在PaddleLite的开发 [Docker镜像](../installation/source_compile) 中,拉取最新PaddleLite代码,编译对应你手机架构的预测库,
下面我们以arm8 架构举例。进入paddlelite 目录,运行以下命令:
```shell
......@@ -73,7 +73,7 @@ resnet50_opt.nb http://paddle-inference-dist.bj.bcebos.com/resnet50_o
下载完后,assets文件夹里要包含解压后的上面五个模型文件夹,但demo里不需要保存原压缩.tar.gz 文件。
注意:输入的模型要求为naive buffer存储格式,您可以通过 [**Model Optimize Tool**](../model_optimize_tool) 将fluid模型转为naive buffer存储格式。
注意:输入的模型要求为naive buffer存储格式,您可以通过 [**Model Optimize Tool**](../user_guides/model_optimize_tool) 将fluid模型转为naive buffer存储格式。
## 运行 Android 程序结果
......
......@@ -9,9 +9,9 @@ Lite框架目前支持的模型结构为[PaddlePaddle](https://github.com/Paddle
## 二. 模型优化
Lite框架拥有强大的加速、优化策略及实现,其中包含诸如量化、子图融合、Kernel优选等等优化手段,为了方便您使用这些优化策略,我们提供了[Model Optimize Tool](../model_optimize_tool)帮助您轻松进行模型优化。优化后的模型更轻量级,耗费资源更少,并且执行速度也更快。
Lite框架拥有强大的加速、优化策略及实现,其中包含诸如量化、子图融合、Kernel优选等等优化手段,为了方便您使用这些优化策略,我们提供了[Model Optimize Tool](model_optimize_tool)帮助您轻松进行模型优化。优化后的模型更轻量级,耗费资源更少,并且执行速度也更快。
Model Optimize Tool的详细介绍,请您参考 [模型优化方法](../model_optimize_tool)
Model Optimize Tool的详细介绍,请您参考 [模型优化方法](model_optimize_tool)
使用Model Optimize Tool,您只需编译后在开发机上执行以下代码:
......@@ -48,8 +48,8 @@ $ ./model_optimize_tool \
## 四. Lite API
为了方便您的使用,我们提供了C++、Java、Python三种API,并且提供了相应的api的完整使用示例:[C++完整示例](../cpp_demo)[Java完整示例](../java_demo)[Python完整示例](../cuda),您可以参考示例中的说明快速了解C++/Java/Python的API使用方法,并集成到您自己的项目中去。需要说明的是,为了减少第三方库的依赖、提高Lite预测框架的通用性,在移动端使用Lite API您需要准备Naive Buffer存储格式的模型,具体方法可参考第2节`模型优化`
为了方便您的使用,我们提供了C++、Java、Python三种API,并且提供了相应的api的完整使用示例:[C++完整示例](cpp_demo)[Java完整示例](java_demo)[Python完整示例](../advanced_user_guides/cuda),您可以参考示例中的说明快速了解C++/Java/Python的API使用方法,并集成到您自己的项目中去。需要说明的是,为了减少第三方库的依赖、提高Lite预测框架的通用性,在移动端使用Lite API您需要准备Naive Buffer存储格式的模型,具体方法可参考第2节`模型优化`
## 五. 测试工具
为了使您更好的了解并使用Lite框架,我们向有进一步使用需求的用户开放了 [Lite Model Debug Tool](../debug_tools)[Profile Monitor Tool](../debug_tools)。Lite Model Debug Tool可以用来查找Lite框架与PaddlePaddle框架在执行预测时模型中的对应变量值是否有差异,进一步快速定位问题Op,方便复现与排查问题。Profile Monitor Tool可以帮助您了解每个Op的执行时间消耗,其会自动统计Op执行的次数,最长、最短、平均执行时间等等信息,为性能调优做一个基础参考。您可以通过 [相关专题](../debug_tools) 了解更多内容。
为了使您更好的了解并使用Lite框架,我们向有进一步使用需求的用户开放了 [Lite Model Debug Tool](../advanced_user_guides/debug_tools)[Profile Monitor Tool](../advanced_user_guides/test_tools)。Lite Model Debug Tool可以用来查找Lite框架与PaddlePaddle框架在执行预测时模型中的对应变量值是否有差异,进一步快速定位问题Op,方便复现与排查问题。Profile Monitor Tool可以帮助您了解每个Op的执行时间消耗,其会自动统计Op执行的次数,最长、最短、平均执行时间等等信息,为性能调优做一个基础参考。您可以通过 [相关专题](../advanced_user_guides/debug_tools) 了解更多内容。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册