提交 0294a4e2 编写于 作者: H hjchen2

Refine java api, add write_to_array and read_from_array op

上级 195eb11c
......@@ -85,18 +85,18 @@ struct Print {
private:
void print(LogLevel level) {
buffer_ << std::endl;
// buffer_ << std::endl;
if (level == kLOG_ERROR) {
std::cerr << buffer_.str();
std::cerr << buffer_.str() << std::endl;
} else {
std::cout << buffer_.str();
std::cout << buffer_.str() << std::endl;
}
}
std::ostringstream buffer_;
};
struct ToLog {
ToLog(LogLevel level = kLOG_DEBUG, const std::string &info = "")
explicit ToLog(LogLevel level = kLOG_DEBUG, const std::string &info = "")
: level_(level) {
unsigned blanks =
(unsigned)(level > kLOG_DEBUG ? (level - kLOG_DEBUG) * 4 : 1);
......
......@@ -81,6 +81,8 @@ const char *G_OP_TYPE_LOGICAL_AND = "logical_and";
const char *G_OP_TYPE_LOGICAL_OR = "logical_or";
const char *G_OP_TYPE_LOGICAL_NOT = "logical_not";
const char *G_OP_TYPE_LOGICAL_XOR = "logical_xor";
const char *G_OP_TYPE_WRITE_TO_ARRAY = "write_to_array";
const char *G_OP_TYPE_READ_FROM_ARRAY = "read_from_array";
const char *G_OP_TYPE_QUANTIZE = "quantize";
const char *G_OP_TYPE_DEQUANTIZE = "dequantize";
......@@ -189,5 +191,7 @@ std::unordered_map<
{G_OP_TYPE_LOGICAL_AND, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_OR, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_XOR, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_LOGICAL_NOT, {{"X"}, {"Out"}}}};
{G_OP_TYPE_LOGICAL_NOT, {{"X"}, {"Out"}}},
{G_OP_TYPE_WRITE_TO_ARRAY, {{"X", "I"}, {"Out"}}},
{G_OP_TYPE_READ_FROM_ARRAY, {{"X", "I"}, {"Out"}}}};
} // namespace paddle_mobile
......@@ -170,6 +170,8 @@ extern const char *G_OP_TYPE_LOGICAL_AND;
extern const char *G_OP_TYPE_LOGICAL_OR;
extern const char *G_OP_TYPE_LOGICAL_NOT;
extern const char *G_OP_TYPE_LOGICAL_XOR;
extern const char *G_OP_TYPE_WRITE_TO_ARRAY;
extern const char *G_OP_TYPE_READ_FROM_ARRAY;
extern const char *G_OP_TYPE_QUANTIZE;
extern const char *G_OP_TYPE_DEQUANTIZE;
......
......@@ -90,6 +90,10 @@ class Attribute {
attr.Set<int64_t>(attr_desc->l);
break;
}
case PADDLE_MOBILE__FRAMEWORK__PROTO__ATTR_TYPE__BLOCK: {
attr.Set<int>(attr_desc->block_idx);
break;
}
default:
PADDLE_MOBILE_THROW_EXCEPTION("attr type not support");
}
......
......@@ -65,6 +65,7 @@ Executor<Device, T>::Executor(const Program<Device> &program,
for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op_desc = ops[j];
DLOG << "create op: " << op_desc->Type();
auto op_handler = OpRegistry<Device>::CreateOp(
op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
op_desc->GetAttrMap(), program_.scope);
......
......@@ -297,3 +297,12 @@ LOAD_OP1(logical_not, CPU);
#ifdef LOGICAL_XOR_OP
LOAD_OP1(logical_xor, CPU);
#endif
#ifdef WHILE_OP
LOAD_OP1(while, CPU);
#endif
#ifdef WRITE_TO_ARRAY_OP
LOAD_OP1(write_to_array, CPU);
#endif
#ifdef READ_FROM_ARRAY_OP
LOAD_OP1(read_from_array, CPU);
#endif
......@@ -176,6 +176,8 @@ LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) {
return tensor;
}
using LoDTensorArray = std::vector<LoDTensor>;
// Get the absolute offset of a lod[start_level][start_idx:end_idx] and
// relative length of details for every levels(i.e., [start_level: ]).
//
......
......@@ -41,9 +41,7 @@ OpDesc::OpDesc(PaddleMobile__Framework__Proto__OpDesc *desc) {
for (int k = 0; k < desc->n_attrs; ++k) {
PaddleMobile__Framework__Proto__OpDesc__Attr *attr = desc->attrs[k];
std::string attr_name(attr->name);
if (attr->type != PADDLE_MOBILE__FRAMEWORK__PROTO__ATTR_TYPE__BLOCK) {
attrs_[attr_name] = Attribute::GetAttrValue(attr);
}
attrs_[attr_name] = Attribute::GetAttrValue(attr);
}
}
......
......@@ -90,7 +90,8 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
#ifdef ENABLE_EXCEPTION
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), optimize, qualified);
jstring2cppstring(env, modelPath), optimize, qualified, 1,
static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
......@@ -116,7 +117,7 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
optimize);
optimize, false, 1, static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
......@@ -142,7 +143,7 @@ JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
try {
isLoadOk = getPaddleMobileInstance()->Load(
jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
optimize, qualified);
optimize, qualified, 1, static_cast<bool>(lodMode));
} catch (paddle_mobile::PaddleMobileException &e) {
ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
isLoadOk = false;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/controlflow/tensor_array_read_write_op.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype, typename T>
void WriteToArrayOp<Dtype, T>::InferShape() const {}
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
template <typename Dtype, typename T>
void ReadFromArrayOp<Dtype, T>::InferShape() const {}
#endif // READ_FROM_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
#ifdef WRITE_TO_ARRAY_OP
REGISTER_OPERATOR_CPU(write_to_array, ops::WriteToArrayOp);
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
REGISTER_OPERATOR_CPU(read_from_array, ops::ReadFromArrayOp);
#endif // READ_FROM_ARRAY_OP
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/tensor_array_read_write_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
DECLARE_OPERATOR(WriteToArray, WriteToArrayParam, WriteToArrayKernel);
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
DECLARE_OPERATOR(ReadFromArray, ReadFromArrayParam, ReadFromArrayKernel);
#endif // WRITE_TO_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/controlflow/while_op.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
template <typename Dtype, typename T>
void WhileOp<Dtype, T>::InferShape() const {
// TODO(hjchen2)
}
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
#ifdef WHILE_OP
REGISTER_OPERATOR_CPU(while, ops::WhileOp);
#endif // WHILE_OP
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/while_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
DECLARE_OPERATOR(While, WhileParam, WhileKernel);
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/tensor_array_read_write_kernel.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
template <>
bool WriteToArrayKernel<CPU, float>::Init(WriteToArrayParam<CPU> *param) {
return true;
}
template <>
void WriteToArrayKernel<CPU, float>::Compute(
const WriteToArrayParam<CPU> &param) {
int64_t offset = param.index_->data<int64_t>()[0];
if (offset >= param.output_->size()) {
param.output_->resize(offset);
}
framework::LoDTensor *out_tensor = &(param.output_->at(offset));
out_tensor->set_lod(param.input_->lod());
if (param.input_->memory_size() > 0) {
TensorCopy(*(param.input_), out_tensor);
}
}
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
template <>
bool ReadFromArrayKernel<CPU, float>::Init(ReadFromArrayParam<CPU> *param) {
return true;
}
template <>
void ReadFromArrayKernel<CPU, float>::Compute(
const ReadFromArrayParam<CPU> &param) {
int64_t offset = param.index_->data<int64_t>()[0];
if (offset < param.input_->size()) {
TensorCopy(param.input_->at(offset), param.output_);
}
}
#endif // READ_FROM_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/while_kernel.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
template <>
bool WhileKernel<CPU, float>::Init(WhileParam<CPU> *param) {
return true;
}
template <>
void WhileKernel<CPU, float>::Compute(const WhileParam<CPU> &param) {
// TODO(hjchen2)
}
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WRITE_TO_ARRAY_OP
DECLARE_KERNEL(WriteToArray, WriteToArrayParam);
#endif // WRITE_TO_ARRAY_OP
#ifdef READ_FROM_ARRAY_OP
DECLARE_KERNEL(ReadFromArray, ReadFromArrayParam);
#endif // READ_FROM_ARRAY_OP
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
#ifdef WHILE_OP
template <typename Dtype>
class WhileParam : public OpParam {
public:
WhileParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope)
: inputs_(inputs), outputs_(outputs), scope_(scope) {
cond_ =
OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs, scope);
sub_block_ = OpParam::GetAttr<int>("sub_block", attrs);
}
public:
framework::LoDTensor *cond_;
int sub_block_;
const VariableNameMap inputs_;
const VariableNameMap outputs_;
const Scope scope_;
};
DECLARE_KERNEL(While, WhileParam);
#endif // WHILE_OP
} // namespace operators
} // namespace paddle_mobile
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstring>
#include <string>
#include "common/log.h"
#include "memory/t_malloc.h"
......
......@@ -2991,5 +2991,63 @@ class LogicalUnaryParam : public OpParam {
};
#endif // LOGICAL_NOT_OP
// #ifdef WHILE_OP
// template <typename Dtype>
// class WhileParam : public OpParam {
// public:
// WhileParam(const VariableNameMap &inputs,
// const VariableNameMap &outputs, const AttributeMap &attrs,
// const Scope &scope) {
// cond_ = OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs,
// scope); block_desc_ = OpParam::GetAttr<framework::BlockDesc
// *>("sub_block", attrs);
// }
//
// public:
// framework::LoDTensor *cond_;
// const framework::BlockDesc *block_desc_;
// };
// #endif // WHILE_OP
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
public:
WriteToArrayParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
output_ =
OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
}
public:
framework::LoDTensor *input_;
framework::LoDTensor *index_;
framework::LoDTensorArray *output_;
};
#endif
#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
public:
ReadFromArrayParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_ =
OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
}
public:
framework::LoDTensorArray *input_;
framework::LoDTensor *index_;
framework::LoDTensor *output_;
};
#endif
} // namespace operators
} // namespace paddle_mobile
文件模式从 100755 更改为 100644
......@@ -337,8 +337,8 @@ if (NOT FOUND_MATCH)
target_link_libraries(test-genet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-sigmoid operators/test_sigmoid_op.cpp test_include.h)
target_link_libraries(test-sigmoid paddle-mobile)
ADD_EXECUTABLE(test-sigmoid-op operators/test_sigmoid_op.cpp test_include.h)
target_link_libraries(test-sigmoid-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-depthwise-conv-op operators/test_depthwise_conv_op.cpp test_helper.h test_include.h executor_for_test.h)
......@@ -408,14 +408,14 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-ocr net/test_ocr.cpp test_helper.h test_include.h)
target_link_libraries(test-ocr paddle-mobile)
ADD_EXECUTABLE(test-sequence-expand operators/test_sequence_expand_op.cpp test_helper.h test_include.h)
target_link_libraries(test-sequence-expand paddle-mobile)
ADD_EXECUTABLE(test-sequence-expand-op operators/test_sequence_expand_op.cpp test_helper.h test_include.h)
target_link_libraries(test-sequence-expand-op paddle-mobile)
ADD_EXECUTABLE(test-sequence-pool operators/test_sequence_pool_op.cpp test_helper.h test_include.h)
target_link_libraries(test-sequence-pool paddle-mobile)
ADD_EXECUTABLE(test-sequence-pool-op operators/test_sequence_pool_op.cpp test_helper.h test_include.h)
target_link_libraries(test-sequence-pool-op paddle-mobile)
ADD_EXECUTABLE(test-sequence-softmax operators/test_sequence_softmax_op.cpp test_helper.h test_include.h)
target_link_libraries(test-sequence-softmax paddle-mobile)
ADD_EXECUTABLE(test-sequence-softmax-op operators/test_sequence_softmax_op.cpp test_helper.h test_include.h)
target_link_libraries(test-sequence-softmax-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-vgg16ssd net/test_vgg16ssd.cpp test_helper.h test_include.h)
......
......@@ -222,27 +222,8 @@ int TestConvOp(int in_channels, int in_height, int in_width, int out_channels,
} // namespace paddle_mobile
int main(int argc, char *argv[]) {
if (argc < 5) {
LOG(paddle_mobile::kLOG_INFO)
<< "Usage:\n"
<< " ./test-int8-conv-op in_channels in_height in_width out_channels "
"[groups]\n"
<< " params:\n"
<< " -in_channels: int, input image's channels\n"
<< " -in_height: int, input image's height\n"
<< " -in_width: int, input image's width\n"
<< " -out_channels: int, conv output channels\n";
return 1;
}
int in_channels = atoi(argv[1]);
int in_height = atoi(argv[2]);
int in_width = atoi(argv[3]);
int out_channels = atoi(argv[4]);
int groups = 1;
if (argc == 6) {
groups = atoi(argv[5]);
}
int TestAll(const int in_channels, const int in_height, const int in_width,
const int out_channels, const int groups) {
// kernel = 3, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>(
......@@ -313,3 +294,18 @@ int main(int argc, char *argv[]) {
return 0;
}
int main() {
TestAll(1, 5, 5, 1, 1);
TestAll(1, 5, 5, 10, 1);
TestAll(10, 5, 5, 10, 10);
TestAll(5, 33, 33, 5, 1);
TestAll(5, 33, 33, 13, 1);
TestAll(13, 33, 33, 13, 13);
TestAll(5, 33, 13, 5, 1);
TestAll(5, 33, 13, 13, 1);
TestAll(13, 33, 13, 13, 13);
return 0;
}
......@@ -76,6 +76,5 @@ int main() {
paddle_mobile::TestLogOp({1, 1, 2, 3});
paddle_mobile::TestLogOp({1, 3, 11, 22});
paddle_mobile::TestLogOp({1, 32, 112, 112});
std::cout << "test log op pass." << std::endl;
return 0;
}
......@@ -92,18 +92,10 @@ static float find_abs_max(const Tensor *input) {
return max_abs;
}
int TestQuqntizeOp(int argc, char *argv[]) {
if (argc < 5) {
std::cout << "Usage: ./test-quantize-op batch_size channel height width"
<< std::endl;
return 1;
}
int batch_size = atoi(argv[1]);
int channel = atoi(argv[2]);
int height = atoi(argv[3]);
int width = atoi(argv[4]);
std::cout << "batch_size: " << batch_size << ", channel: " << channel
<< ", height: " << height << ", width: " << width << std::endl;
int TestQuqntizeOp(const int batch_size, const int channel, const int height,
const int width) {
DLOG << "batch_size: " << batch_size << ", channel: " << channel
<< ", height: " << height << ", width: " << width;
framework::DDim dim =
framework::make_ddim({batch_size, channel, height, width});
......@@ -140,9 +132,7 @@ int TestQuqntizeOp(int argc, char *argv[]) {
framework::Tensor output_cmp;
output_cmp.Resize(output->dims());
float scale = 127 / output_scale_cmp;
// quantize<round::RoundToEven>(input, scale, &output_cmp);
// quantize<round::RoundAwayZero>(input, scale, &output_cmp);
quantize<round::RoundTowardsZero>(input, scale, &output_cmp);
quantize<round::RoundAwayZero>(input, scale, &output_cmp);
int8_t *output_cmp_data = output_cmp.data<int8_t>();
for (int i = 0; i < output->numel(); ++i) {
PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
......@@ -157,5 +147,7 @@ int TestQuqntizeOp(int argc, char *argv[]) {
} // namespace paddle_mobile
int main(int argc, char *argv[]) {
return paddle_mobile::TestQuqntizeOp(argc, argv);
TestQuqntizeOp(1, 10, 10, 5);
TestQuqntizeOp(1, 111, 111, 5);
TestQuqntizeOp(5, 111, 111, 5);
}
......@@ -59,7 +59,7 @@ int TestSequencePoolOp(const framework::LoDTensor &input_x,
int main(int argc, char *argv[]) {
framework::LoDTensor input_x, output;
// case 1
std::cerr << "running max case 1" << std::endl;
DLOG << "running max case 1";
{
std::vector<float> data{1, 2, 3, 4};
input_x.Resize(framework::make_ddim({4, 1}));
......@@ -71,14 +71,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{2, 4};
for (int i = 0; i < 2; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 2
std::cerr << "running max case 2" << std::endl;
DLOG << "running max case 2";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
input_x.Resize(framework::make_ddim({data.size(), 1}));
......@@ -90,13 +90,13 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{3, 10};
for (int i = 0; i < 2; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
std::cerr << "running max case 3" << std::endl;
DLOG << "running max case 3";
// case 3
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8};
......@@ -109,14 +109,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{3, 4, 7, 8};
for (int i = 0; i < 4; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 4
std::cerr << "running max case 4" << std::endl;
DLOG << "running max case 4";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
......@@ -129,14 +129,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{6, 7, 8, 9, 10, 16, 17, 18, 19, 20};
for (int i = 0; i < 10; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 1
std::cerr << "running sum case 1" << std::endl;
DLOG << "running sum case 1";
{
std::vector<float> data{1, 2, 3, 4};
input_x.Resize(framework::make_ddim({4, 1}));
......@@ -148,14 +148,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{3, 7};
for (int i = 0; i < 2; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 2
std::cerr << "running sum case 2" << std::endl;
DLOG << "running sum case 2";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
input_x.Resize(framework::make_ddim({data.size(), 1}));
......@@ -167,14 +167,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{6, 49};
for (int i = 0; i < 2; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 3
std::cerr << "running sum case 3" << std::endl;
DLOG << "running sum case 3";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8};
input_x.Resize(framework::make_ddim({4, 2}));
......@@ -186,14 +186,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{4, 6, 12, 14};
for (int i = 0; i < 4; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 4
std::cerr << "running sum case 4" << std::endl;
DLOG << "running sum case 4";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
......@@ -206,14 +206,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{7, 9, 11, 13, 15, 27, 29, 31, 33, 35};
for (int i = 0; i < 10; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 1
std::cerr << "running first case 1" << std::endl;
DLOG << "running first case 1";
{
std::vector<float> data{1, 2, 3, 4};
input_x.Resize(framework::make_ddim({4, 1}));
......@@ -225,14 +225,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{1, 3};
for (int i = 0; i < 2; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 2
std::cerr << "running first case 2" << std::endl;
DLOG << "running first case 2";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
input_x.Resize(framework::make_ddim({data.size(), 1}));
......@@ -244,14 +244,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{1, 4};
for (int i = 0; i < 2; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 3
std::cerr << "running first case 3" << std::endl;
DLOG << "running first case 3";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8};
input_x.Resize(framework::make_ddim({4, 2}));
......@@ -263,14 +263,14 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{1, 2, 5, 6};
for (int i = 0; i < 4; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
}
// case 4
std::cerr << "running first case 4" << std::endl;
DLOG << "running first case 4";
{
std::vector<float> data{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
......@@ -283,8 +283,8 @@ int main(int argc, char *argv[]) {
std::vector<float> expect_data{1, 2, 3, 4, 5, 11, 12, 13, 14, 15};
for (int i = 0; i < 10; ++i) {
if (output.data<float>()[i] != expect_data[i]) {
std::cerr << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i] << std::endl;
DLOG << "output[" << i << "]: " << output.data<float>()[i]
<< " != expect[" << i << "]: " << expect_data[i];
return 1;
}
}
......
......@@ -76,6 +76,5 @@ int main() {
paddle_mobile::TestSigmoidOp({1, 1, 2, 3});
paddle_mobile::TestSigmoidOp({1, 3, 11, 22});
paddle_mobile::TestSigmoidOp({1, 32, 112, 112});
std::cout << "test sigmoid op pass." << std::endl;
return 0;
}
......@@ -58,7 +58,7 @@ int TestTanhOp(const std::vector<int> input_shape) {
const float *output_data = output->data<float>();
for (int i = 0; i < output->numel(); ++i) {
float gap = output_data[i] - output_cmp_data[i];
if (std::abs(gap / (output_data[i] + 1e-5)) > 1e-3) {
if (gap > 1e-5 && std::abs(gap / (output_data[i] + 1e-5)) > 1e-3) {
LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
<< ", output_cmp_data[" << i
<< "] = " << output_cmp_data[i];
......
......@@ -15,6 +15,7 @@
# limitations under the License.
set -e
source ./ci_run_test.sh
function print_usage() {
echo "\n${RED}Usage${NONE}:
......@@ -63,7 +64,7 @@ function check_ndk() {
}
function build_android_armv7_cpu_only() {
rm -rf ../build/armeabi-v7a
# rm -rf ../build/armeabi-v7a
cmake .. \
-B"../build/armeabi-v7a" \
-DANDROID_ABI="armeabi-v7a with NEON" \
......@@ -82,7 +83,7 @@ function build_android_armv7_cpu_only() {
}
function build_android_armv7_gpu() {
rm -rf ../build/armeabi-v7a
# rm -rf ../build/armeabi-v7a
cmake .. \
-B"../build/armeabi-v7a" \
-DANDROID_ABI="armeabi-v7a with NEON" \
......@@ -231,6 +232,11 @@ function build_linux_fpga() {
docker build -t paddle-mobile:dev - < Dockerfile
fi
docker run --rm -v `pwd`:/workspace paddle-mobile:dev bash /workspace/tools/docker_build_fpga.sh
cd -
}
function run_android_test() {
ExecuteAndroidTest $1
}
function main() {
......@@ -239,9 +245,11 @@ function main() {
case $CMD in
android_armv7)
build_android_armv7
run_android_test armeabi-v7a
;;
android_armv8)
build_android_armv8
run_android_test arm64-v8a
;;
ios)
build_ios
......
#!/usr/bin/env bash
operators=
function AddTest() {
operators="${operators} $1"
}
function ExecuteAndroidTest() {
platform=$1
adb shell rm -rf /data/local/tmp/*
adb push ../build/${platform}/build/libpaddle-mobile.so /data/local/tmp/
for op in ${operators}
do
adb push ../test/build/test-${op}-op /data/local/tmp/
adb shell "cd /data/local/tmp/; LD_LIBRARY_PATH=. ./test-${op}-op"
echo "${BLUE}run test ${op} pass${NONE}"
done
}
AddTest batchnorm
AddTest cast
AddTest conv
AddTest dequantize
#AddTest elementwiseadd
AddTest log
AddTest logical-and
AddTest logical-not
AddTest logical-or
AddTest logical-xor
AddTest pool
AddTest quantize
AddTest relu
AddTest relu6
AddTest sequence-expand
AddTest sequence-pool
AddTest sequence-softmax
AddTest sigmoid
AddTest softmax
AddTest tanh
AddTest topk
#!/usr/bin/env bash
apt-get update
apt-get install -y gcc g++ cmake
......
......@@ -285,6 +285,9 @@ if(NOT FOUND_MATCH)
set(LOGICAL_OR_OP ON)
set(LOGICAL_NOT_OP ON)
set(LOGICAL_XOR_OP ON)
set(WHILE_OP ON)
set(WRITE_TO_ARRAY_OP ON)
set(READ_FROM_ARRAY_OP ON)
endif()
# option(BATCHNORM_OP "" ON)
......@@ -559,3 +562,13 @@ endif()
if (FUSION_DECONVADDRELU_OP)
add_definitions(-DFUSION_DECONVADDRELU_OP)
endif()
if (WHILE_OP)
add_definitions(-DWHILE_OP)
endif()
if (WRITE_TO_ARRAY_OP)
add_definitions(-DWRITE_TO_ARRAY_OP)
endif()
if (READ_FROM_ARRAY_OP)
add_definitions(-DREAD_FROM_ARRAY_OP)
endif()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册