提交 002413ad 编写于 作者: L lijianshe02 提交者: GitHub

add matmul op kernels for asr test=develop (#2032)

上级 8b0dc8a3
......@@ -38,6 +38,7 @@ add_kernel(elementwise_compute_x86 X86 basic SRCS elementwise_compute.cc DEPS ${
if(NOT LITE_WITH_X86)
return()
endif()
add_kernel(matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS ${lite_kernel_deps} blas)
lite_cc_test(test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86)
lite_cc_test(test_slice_compute_x86 SRCS slice_compute_test.cc DEPS slice_compute_x86)
......@@ -48,3 +49,4 @@ lite_cc_test(test_sequence_pool_compute_x86 SRCS sequence_pool_compute_test.cc D
lite_cc_test(test_shape_compute_x86 SRCS shape_compute_test.cc DEPS shape_compute_x86)
lite_cc_test(test_softmax_compute_x86 SRCS softmax_compute_test.cc DEPS softmax_compute_x86)
lite_cc_test(test_elementwise_compute_x86 SRCS elementwise_compute_test.cc DEPS elementwise_compute_x86)
lite_cc_test(test_matmul_compute_x86 SRCS matmul_compute_test.cc DEPS matmul_compute_x86)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/matmul_compute.h"
REGISTER_LITE_KERNEL(matmul,
kX86,
kFloat,
kNCHW,
paddle::lite::kernels::x86::MatMulCompute<float>,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/backends/x86/math/blas.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/types.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
/**
* Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
* original x_dim is returned.
*/
static lite::DDim RowMatrixFromVector(const lite::DDim &x_dim) {
if (x_dim.size() > 1) {
return x_dim;
}
return lite::DDim({1, x_dim[0]});
}
/**
* Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
* original y_dim is returned.
*/
static lite::DDim ColumnMatrixFromVector(const lite::DDim &y_dim) {
if (y_dim.size() > 1) {
return y_dim;
}
return lite::DDim({y_dim[0], 1});
}
template <typename T>
class MatMulCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
using param_t = operators::MatMulParam;
void Run() override {
auto &context = ctx_->As<X86Context>();
auto &param = *param_.get_mutable<operators::MatMulParam>();
auto *x = param.X;
auto *y = param.Y;
auto *out = param.Out;
out->mutable_data<T>();
auto blas = lite::x86::math::GetBlas<lite::TargetType::kX86, T>(context);
auto mat_dim_a = lite::x86::math::CreateMatrixDescriptor(
RowMatrixFromVector(x->dims()), 0, param.transpose_X);
auto mat_dim_b = lite::x86::math::CreateMatrixDescriptor(
ColumnMatrixFromVector(y->dims()), 0, param.transpose_Y);
auto scale = static_cast<T>(param.alpha);
blas.MatMul(*x, mat_dim_a, *y, mat_dim_b, scale, out, T(0));
}
virtual ~MatMulCompute() = default;
};
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/matmul_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
TEST(matmul_x86, retrive_op) {
auto matmul =
KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
"matmul");
ASSERT_FALSE(matmul.empty());
ASSERT_TRUE(matmul.front());
}
TEST(matmul_x86, init) {
lite::kernels::x86::MatMulCompute<float> matmul;
ASSERT_EQ(matmul.precision(), PRECISION(kFloat));
ASSERT_EQ(matmul.target(), TARGET(kX86));
}
TEST(matmul_x86, run_test) {
lite::Tensor x, y, out;
constexpr int batch_size = 1;
std::vector<int64_t> x_shape{batch_size, 3, 2};
x.Resize(lite::DDim(x_shape));
std::vector<int64_t> y_shape{2, 4};
y.Resize(lite::DDim(y_shape));
std::vector<int64_t> out_shape{batch_size, 3, 4};
out.Resize(lite::DDim(out_shape));
auto x_data = x.mutable_data<float>();
auto y_data = y.mutable_data<float>();
auto out_data = out.mutable_data<float>();
for (int64_t i = 0; i < x.dims().production(); i++) {
x_data[i] = static_cast<float>(i);
}
for (int64_t i = 0; i < y.dims().production(); i++) {
y_data[i] = static_cast<float>(i);
}
// MatMulCompute matmul;
MatMulCompute<float> matmul;
operators::MatMulParam param;
param.X = &x;
param.Y = &y;
param.Out = &out;
std::unique_ptr<KernelContext> ctx(new KernelContext);
ctx->As<X86Context>();
matmul.SetContext(std::move(ctx));
matmul.SetParam(param);
matmul.Run();
std::vector<float> ref_result = {4, 5, 6, 7, 12, 17, 22, 27, 20, 29, 38, 47};
for (int i = 0; i < out.dims().production(); i++) {
EXPECT_NEAR(out_data[i], ref_result[i], 1e-3);
}
}
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(matmul, kX86, kFloat, kNCHW, def);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册