1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/model_parser/naive_buffer/naive_buffer.h"
namespace paddle {
namespace lite {
namespace naive_buffer {
namespace proto {
// Struct for framework
class OpDesc : public StructBuilder {
public:
// Move AttrType in OpDesc in NaiveBuffer
enum AttrType {
INT = 0,
FLOAT,
STRING,
INTS,
FLOATS,
STRINGS,
BOOLEAN,
BOOLEANS,
BLOCK,
LONG,
BLOCKS,
LONGS
};
class Attr : public StructBuilder {
public:
explicit Attr(BinaryTable* table) : StructBuilder(table) {
using enum_builder = EnumBuilder<AttrType>;
NewStr("name");
New<enum_builder>("type");
NewInt32("i");
NewFloat32("f");
NewStr("s");
New<ListBuilder<Int32Builder>>("ints");
New<ListBuilder<Float32Builder>>("floats");
New<ListBuilder<StringBuilder>>("strings");
New<BoolBuilder>("b");
New<ListBuilder<BoolBuilder>>("bools");
NewInt32("block_idx");
NewInt64("l");
New<ListBuilder<Int32Builder>>("blocks_idx");
New<ListBuilder<Int64Builder>>("longs");
}
};
class Var : public StructBuilder {
public:
explicit Var(BinaryTable* table) : StructBuilder(table) {
NewStr("parameter");
New<ListBuilder<StringBuilder>>("arguments");
}
};
explicit OpDesc(BinaryTable* table) : StructBuilder(table) {
NewStr("type");
New<ListBuilder<Var>>("inputs");
New<ListBuilder<Var>>("outputs");
New<ListBuilder<Attr>>("attrs");
NewBool("is_target", false);
}
};
enum VarDataType {
// Pod Types
BOOL = 0,
INT16,
INT32,
INT64,
FP16,
FP32,
FP64,
// Tensor<size_t> is used in C++.
SIZE_T,
UINT8,
INT8,
// Other types that may need additional descriptions
LOD_TENSOR,
SELECTED_ROWS,
FEED_MINIBATCH,
FETCH_LIST,
STEP_SCOPES,
LOD_RANK_TABLE,
LOD_TENSOR_ARRAY,
PLACE_LIST,
READER,
// Any runtime decided variable type is raw
// raw variables should manage their own allocations
// in operators like nccl_op
RAW,
TUPLE
};
class TensorDesc : public StructBuilder {
public:
using enum_builder = EnumBuilder<VarDataType>;
explicit TensorDesc(BinaryTable* table) : StructBuilder(table) {
// Should only be PODType. Is enforced in C++
New<enum_builder>("data_type");
New<ListBuilder<Int64Builder>>("dims");
}
};
class LoDTensorDesc : public StructBuilder {
public:
explicit LoDTensorDesc(BinaryTable* table) : StructBuilder(table) {
New<TensorDesc>("tensor");
NewInt32("lod_level", 0);
}
};
class LoDTensorArrayDesc : public StructBuilder {
public:
explicit LoDTensorArrayDesc(BinaryTable* table) : StructBuilder(table) {
New<TensorDesc>("tensor");
NewInt32("lod_level", 0);
}
};
class VarType : public StructBuilder {
public:
using Type = VarDataType;
using enum_builder = EnumBuilder<Type>;
using ReaderDesc = ListBuilder<LoDTensorDesc>;
using Tuple = ListBuilder<enum_builder>;
explicit VarType(BinaryTable* table) : StructBuilder(table) {
New<enum_builder>("type");
New<TensorDesc>("selected_rows");
New<LoDTensorDesc>("lod_tensor");
New<LoDTensorArrayDesc>("tensor_array");
New<ReaderDesc>("reader");
New<Tuple>("tuple");
}
};
class VarDesc : public StructBuilder {
public:
explicit VarDesc(BinaryTable* table) : StructBuilder(table) {
NewStr("name");
New<VarType>("type");
NewBool("persistable", false);
}
};
class BlockDesc : public StructBuilder {
public:
explicit BlockDesc(BinaryTable* table) : StructBuilder(table) {
NewInt32("idx");
NewInt32("parent_idx");
New<ListBuilder<VarDesc>>("vars");
New<ListBuilder<OpDesc>>("ops");
NewInt32("forward_block_idx", -1);
}
};
class ProgramDesc : public StructBuilder {
public:
explicit ProgramDesc(BinaryTable* table) : StructBuilder(table) {
New<ListBuilder<BlockDesc>>("blocks");
NewInt64("version", 0);
}
};
class ParamDesc : public StructBuilder {
public:
using lod_type = ListBuilder<ListBuilder<UInt64Builder>>;
explicit ParamDesc(BinaryTable* table) : StructBuilder(table) {
NewUInt32("model_version");
NewUInt64("lod_level");
New<lod_type>("lod");
NewUInt32("tensor_version");
New<TensorDesc>("tensor_desc");
New<ListBuilder<CharBuilder>>("data");
}
};
} // namespace proto
} // namespace naive_buffer
} // namespace lite
} // namespace paddle